1. bookVolume 65 (2019): Edition 2 (June 2019)
Détails du magazine
Première parution
14 Dec 2009
4 fois par an
Accès libre

A comparison of different methods for assessing leaf area index in four canopy types

Publié en ligne: 09 May 2019
Volume & Edition: Volume 65 (2019) - Edition 2 (June 2019)
Pages: 67 - 80
Détails du magazine
Première parution
14 Dec 2009
4 fois par an

Alivernini, A., Fares, S., Ferrara, C., Chianucci, F., 2018: An objective image analysis method for estimation of canopy attributes from digital cover photography. Trees, 32:713–723.10.1007/s00468-018-1666-3Search in Google Scholar

Bland, J. M., Altman, D. G., 1986: Statistical methods for assessing agreement between two methods of clinical measurement. Lancet, 327:307–310.10.1016/S0140-6736(86)90837-8Search in Google Scholar

Breda, N. J. J., 2003: Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. Journal of Experimental Botany, 54:2403–2417.10.1093/jxb/erg26314565947Search in Google Scholar

Broeckx, L. S., Verlinden, M. S., Ceulemans, R., 2012: Establishment and two-year growth of a bio-energy plantation with fast-growing Populus trees in Flanders (Belgium): effects of genotype and former land use. Biomass & Bioenergy, 42:151–163.10.1016/j.biombioe.2012.03.005Search in Google Scholar

Broeckx, L. S., Vanbeveren, P. P. S., Verlinden, M. S., Ceulemans, R., 2015: First vs. second rotation of a poplar short rotation coppice: leaf area development, light interception and radiation use efficiency. iForest – Biogeosciences and Forestry, 8:565–573.10.3832/ifor1457-008Search in Google Scholar

Carstensen, B., 2010: Comparing methods of measurement: Extending the LoA by regression. Statistics in Medicine, 29:401–410.10.1002/sim.376919998394Search in Google Scholar

Chen, J. M. R., 1997: Leaf area index of boreal forests: Theory, techniques and measurements. Journal of Geophysical Research, 102:429–443.10.1029/97JD01107Search in Google Scholar

Chen, J. M., Black, T. A., 1992: Defining leaf area index for non-flat leaves. Plant, Cell & Environment, 15:421–429.10.1111/j.1365-3040.1992.tb00992.xSearch in Google Scholar

Chen, J. M., Rich, P. M., Gower, S. T., Norman, J. M., Plummer, S., 1997: Leaf area index of boreal forests: Theory, techniques, and measurements. Journal of Geophysical Research: Atmospheres, 102:29429–29443.10.1029/97JD01107Search in Google Scholar

Chianucci, F., Cutini, A., 2013: Estimation of canopy properties in deciduous forests with digital hemispherical and cover photography. Agricultural and Forest Meteorology, 168:130–139.10.1016/j.agrformet.2012.09.002Search in Google Scholar

Chianucci, F., Disperati, L., Guzzi, D., Bianchini, D., Nardino, V., Lastri, C. et al., 2016: Estimation of canopy attributes in beech forests using true colour digital images from a small fixed-wing UAV. International Journal of Applied Earth Observation and Geoinformation, 47:60–68.10.1016/j.jag.2015.12.005Search in Google Scholar

Chiroro, D., Milford, J., Makuvaro, V., 2006: An investigation on the utility of the SunScan ceptometer in estimating the leaf area index of a sugarcane canopy. Proceedings of the South African Sugar Technologists Association, 80:143–147.Search in Google Scholar

Cleveland, W. S., 1979: Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association, 74:829–836.10.1080/01621459.1979.10481038Search in Google Scholar

Curiel, Y. J., Konôpka, B., Janssens, I. A., Coenen, K., Xiao, C. W., Ceulemans, R., 2005: Contrasting net primary productivity and carbon distribution between neighbouring stands of Quercus robur and Pinus sylvestris. Tree Physiology, 25:701–712.10.1093/treephys/25.6.701Search in Google Scholar

Daughtry, C. S. T., 1990: Direct measurements of canopy structure. Remote Sensing Reviews, 5:545–60.10.1080/02757259009532121Search in Google Scholar

Duchemin, B., Hadriab, R., Errakib, S., Bouleta, G., Maisongrandea, P., Chehbounia, A. et al., 2006: Monitoring wheat phenology and irrigation in Central Morocco: On the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices. Agricultural Water Management, 79:1–27.10.1016/j.agwat.2005.02.013Search in Google Scholar

Facchi, A., Baroni, G., Boschetti, M., Gandolfi, C., 2010: Comparing optical and direct methods for leaf area index determination in a maize crop. Journal of Agricultural Engineering, 1:33–40.10.4081/jae.2010.1.33Search in Google Scholar

Fang, F., 2005: The retrieval of leaf inclination angle and leaf area index in maize. Master of Science thesis, Geo-Information Science and Earth Observation for Environmental Modelling and Management program. University of Lund, Sweden, 64 p.Search in Google Scholar

Fang, H., Li, W., Wei, S., Jiang, C., 2014: Seasonal variation of leaf area index (LAI) over paddy rice fields in NE China: Inter-comparison of destructive sampling, LAI-2200, digital hemispherical photography (DHP), and AccuPAR methods. Agricultural and Forest Meteorology, 198–199:126–14.10.1016/j.agrformet.2014.08.005Search in Google Scholar

Gebauer, R., Cermak, J., Plichta, R., Spinlerova, Z., Urban, J., Volarik, D. et al., 2015: Within-canopy variation in needle morphology and anatomy of vascular tissues in a sparse Scots pine forest. Trees, 29:1447–1457.10.1007/s00468-015-1224-1Search in Google Scholar

Gielen, B., De Vos, B., Campioli, M., Neirynck, J., Papale, D., Verstraeten, A. et al., 2013: Biometric and eddy covariance-based assessment of decadal carbon sequestration of a temperate Scots pine forest. Agricultural and Forest Meteorology, 174–175:135–143.10.1016/j.agrformet.2013.02.008Search in Google Scholar

Gower, S. T., Kucharik, C. J., Norman, J. M., 1999: Direct and indirect estimation of Leaf Area Index, fAPAR, and Net Primary Production of terrestrial ecosystems. Remote Sensing Environment, 70:29–51.10.1016/S0034-4257(99)00056-5Search in Google Scholar

Homolová, L., Malenovský, Z., Hanuš, J., Tomášková, I., Dvořáková, M., Pokorný, R., 2007: Comparison of different ground techniques to map leaf area index of Norway spruce forest canopy. International Society for Photogrammetry and Remote Sensing (ISPRS), XXXVI, 499–504. [online] URL: http://www.isprs.org/proceedings/XXXVI/7-C50/papers/P95.pdf (accessed 15.01.2019).Search in Google Scholar

Jonckheere, I., Fleck, S., Nackaerts, K., Muys, B., Cop-pin, P., Weiss, M. et al., 2004: Review of methods for in situ leaf area index determination. Part I: Theories, sensors and hemispherical photography. Agricultural and Forest Meteorology, 121:19–35.10.1016/j.agrformet.2003.08.027Search in Google Scholar

Jonckheere, I., Muys, B., Coppin, P., 2005: Allometry and evaluation of in situ optical LAI determination in Scots pine: a case study in Belgium. Tree Physiology, 25:723–732.10.1093/treephys/25.6.723Search in Google Scholar

Jones, H. G., 2014: Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology. Third edition, Cambridge University Press, NY, USA.10.1017/CBO9780511845727Search in Google Scholar

Konôpka, B., Pajtík, J., 2014: Similar foliage area but contrasting foliage biomass between young beech and spruce stands. Lesnícky časopis - Forestry Journal, 60:205–213.10.1515/forj-2015-0002Search in Google Scholar

Lang, A. R. G., Xiang, Y., 1986: Estimation of leaf area index from transmission of direct sunlight in discontinuous canopies. Agricultural and Forest Meteorology, 37:229–243.10.1016/0168-1923(86)90033-XSearch in Google Scholar

Leblanc, S. G., Chen, J. M., Fernandes, R., Deering, D. W., Conley, A., 2005: Methodology comparison for canopy structure parameters extraction from digital hemispherical photography in boreal forests. Agricultural and Forest Meteorology, 129:187–207.10.1016/j.agrformet.2004.09.006Search in Google Scholar

Lin, A., Zhu, H., Wang, L., Gong, W., Zou, L. 2016: Characteristics of long-term climate change and the ecological responses in central China. Earth Interactions, 20:1–24.Search in Google Scholar

Lopez-Lozano, R., Baret, F., Chelle, M., Rochdi, N., España, M., 2007: Sensitivity of gap fraction to maize architectural characteristics based on 4D model simulations. Agricultural and Forest Meteorology, 143:217–229.10.1016/j.agrformet.2006.12.005Search in Google Scholar

Mason, G. E., Diepstraten, M., Pinjuv, G. L., Lasserre, J-P., 2012: Comparison of direct and indirect leaf area index measurements of Pinus radiate D. Don. Agricultural and Forest Meteorology, 166–167:113–119.10.1016/j.agrformet.2012.06.013Search in Google Scholar

Macfarlane, C., Hoffman, M., Eamus, D., Kerp, N., Higginson, S., McMurtrie, R. et al., 2007: Estimation of leaf area index in eucalypt forest using digital photography. Agricultural and Forest Meteorology, 143:176–188.10.1016/j.agrformet.2006.10.013Search in Google Scholar

Op de Beeck, M., Gielen, B., Jonckheere, I., Samson, R., Janssens, I. A., Ceulemans, R., 2010: Needle age-related and seasonal photosynthetic capacity variation is negligible for modelling yearly gas exchange of a sparse temperate Scots pine forest. Biogeosciences, 7:199–215.10.5194/bg-7-199-2010Search in Google Scholar

Passing, H., Bablok, W., 1983: A new biometrical procedure for testing the equality of measurements from two different analytical methods. Application of linear regression procedures for method comparison studies in clinical chemistry, Part I. Journal of Clinical Chemistry and Clinical Biochemistry, 21:709–720.10.1515/cclm.1983.21.11.7096655447Search in Google Scholar

Ridler, T. W., Calvard, S., 1978: Picture thresholding using an iterative selection method. IEEE Transactions on System, Man and Cybernetics, 8:630–632.10.1109/TSMC.1978.4310039Search in Google Scholar

Ryu, Y., Nilson, T., Kobayashi, H., Sonnentag, O., Law, BE., Baldocchi, D. D., 2010a: On the correct estimation of effective leaf area index: Does it reveal information on clumping effects? Agricultural and Forest Meteorology, 150:463–472.10.1016/j.agrformet.2010.01.009Search in Google Scholar

Ryu, Y., Sonnentag, O., Nilson, T., Vargas, R., Kobayashi, H., Wenk, R. et al., 2010b: How to quantify tree leaf area index in an open savanna ecosystem: a multiinstrument and multi-model approach. Agricultural and Forest Meteorology, 150:63–76.10.1016/j.agrformet.2009.08.007Search in Google Scholar

Schaefer, MT., Farmer, E., Soto-Berelov, M., Woodgate, W., Jones, S., 2015: Overview of ground based techniques for estimating LAI. In: Held, A., Phinn, S., Soto-Berelov, M. & Jones, S. (eds.): AusCover Good Practice Guidelines: A technical handbook supporting calibration and validation activities of remotely sensed data product, 88–118. Version 1.1. TERN AusCover, ISBN 978-0-646-94137-0.Search in Google Scholar

Scrucca, L., 2011: Model-based SIR for dimension reduction. Computational Statistics & Data Analysis, 55:3010–3026.10.1016/j.csda.2011.05.006Search in Google Scholar

Sone, C., Saito, K., Futakuchi, K., 2009: Comparison of three methods for estimating leaf area index of upland rice cultivars. Crop Science, 49:1438–1443.10.2135/cropsci2008.09.0520Search in Google Scholar

Thimonier, A., Sedivy, I., Schleppi, P., 2010: Estimating leaf area index in different types of mature forest stands in Switzerland: a comparison of methods. European Journal of Forest Research, 129:543–562.10.1007/s10342-009-0353-8Search in Google Scholar

Verlinden, M. S., Broeckx, L. S., Ceulemans, R., 2015: First vs. second rotation of a poplar short rotation coppice: Above-ground biomass productivity and shoot dynamics. Biomass & Bioenergy, 73:174–185.10.1016/j.biombioe.2014.12.012Search in Google Scholar

Webb, N., Nichol, C., Wood, J., Potter, E., 2013: User Manual for the SunScan Canopy Analysis System type SS1 Version: 3.0, Delta-T Devices Ltd. 37–39: 49–56. [online] URL: http://www.delta-t.co.uk/wp-content/uploads/2016/10/SS1-SunScan-User-Manual-v2-0.pdf (accessed 15.01.19).Search in Google Scholar

Weiss, M., Baret, F., Smith, G. J., Jonckheere, I., Cop-pin, P., 2004: Review of methods for in situ leaf area index (LAI) determination. Part II: Estimation of LAI, errors and sampling. Agricultural and Forest Meteorology, 121:37–53.10.1016/j.agrformet.2003.08.001Search in Google Scholar

Wilhelm, W., Ruwe, K., Schlemmer, M. R., 2000: Comparison of three leaf area index meters in a corn canopy. Crop Science, 40:1179–1183.10.2135/cropsci2000.4041179xSearch in Google Scholar

Woodgate, W., Jones, S. D., Suarez, L., Hill, M. J., Armston, J. D., Wilkes, P. et al., 2015: Understanding the variability in ground-based methods for retrieving canopy openness, gap fraction, and leaf area index in diverse forest systems. Agricultural and Forest Meteorology, 205:83–95.10.1016/j.agrformet.2015.02.012Search in Google Scholar

Zheng, G. and Moskal, L. M., 2009: Retrieving Leaf Area Index (LAI) using remote sensing: theories, methods and sensors. Sensors, 9:2719–2745.10.3390/s90402719334879222574042Search in Google Scholar

GCOS, 2011: Systematic Observation Requirements for Satellite-based Data Products for Climate. WMO, Switzerland. [online] URL:http://www.wmo.int/pages/prog/gcos/Publications/gcos-154.pdf (accessed 15.01.2019).Search in Google Scholar

ICOS Ecosystem Thematic Center. [online] URL: http://www.icos-etc.eu/icos/ (accessed 15.01.2019).Search in Google Scholar

LI-COR, 2009. LAI–2200 Plant Canopy Analyzer Instruction Manual. Lincoln, NE, USA. [online] URL: https://www.licor.com/documents/6n3conpja6uj9aq1ruyn (accessed 15.01.2019).Search in Google Scholar

POPFULL Project. [online] URL: http://uahost.uantwerpen.be/popfull/ (accessed 15.01.2019).Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo