1. bookVolume 65 (2019): Issue 2 (June 2019)
Journal Details
First Published
14 Dec 2009
Publication timeframe
4 times per year
Open Access

Assessment of phenotypic plasticity of spruce species Picea abies (L.) Karst. and P. obovata (Ledeb.) on provenances tests in European North of Russia

Published Online: 09 May 2019
Volume & Issue: Volume 65 (2019) - Issue 2 (June 2019)
Page range: 121 - 128
Journal Details
First Published
14 Dec 2009
Publication timeframe
4 times per year

Beaulieu, J., Rainville, A., 2005: Adaptation to climate change: Genetic variation is both a short- and a long-term solution. The Forestry Chronicle, 81:704–709.10.5558/tfc81704-5Search in Google Scholar

Becker, H. C., 1981: Correlation among some statistical measures of phenotypic stability. Euphytica, 30: 835–840.10.1007/BF00038812Search in Google Scholar

Besedina, T. D., Tutberidze, Ts. V., Dobezhina S. V., 2014: Ecological characteristics of the introduced cultivars of Actinidia deliciosa in Russian humid subtropics. Nauchnyj zhurnal KubGAU, 100:1275–1286. [in Russian].Search in Google Scholar

Demina N. A., Faizulin D. Kh., Nakvasina, E. N., 2013: Specification of the boundaries of forest seeding of spruce in the European North. Lesnoj Vestnik, 2:23–28. [in Russian].Search in Google Scholar

Dering, M., Lewandowski, A., 2007: Postglacial re-colonization of Norway spruce (Picea abies [L.] Karsten) in Poland based on molecular markers In: Conference session abstracts “Norway Spruce in the Conservation of Forest Ecosystems in Europe”, September 3–5, 2007, Warszawa, 37 p.Search in Google Scholar

Eberhart, S. A., Russell, W. A., 1966: Stability parameters for comparing varieties. Crop Science, 6:36–42.10.2135/cropsci1966.0011183X000600010011xSearch in Google Scholar

Faizulin, D. Kh., Artemjeva, N. R., Senkov, A. O., 2011: Pine and spruce provenance tests in the middle and southern subzones of the taiga of the European part of the Russian Federation. In: Results of scientific research work of “SevNIILKh” for 2005–2009. Arkhangelsk, p. 23–27. [in Russian].Search in Google Scholar

Garzón, M. B., Alía, R., Robson, T. M., Zavala, M. A., 2011: Intra-specific variability and plasticity influence potential tree species distributions under climate change. Global Ecology and Biogeography, 20:766–778.10.1111/j.1466-8238.2010.00646.xSearch in Google Scholar

Gienapp, P., Teplitsky, C., Alho, J. S., Mills, J. A., Merila, J., 2008: Climate change and evolution: disentangling environmental and genetic responses. Molecular Ecology, 17:167–178.10.1111/j.1365-294X.2007.03413.x18173499Search in Google Scholar

Gomez-Mestre, I., Jovani, R., 2013: A heuristic model on the role of plasticity in adaptive evolution: plasticity increases adaptation, population viability and genetic variation. Proceedings of the Royal Society B: Biological Sciences, https://doi.org/10.1098/rspb.2013.1869.10.1098/rspb.2013.1869379048424068357Open DOISearch in Google Scholar

Gömöry, D., Longauer, R., Hlásny, T., Pacalaj, M., Strmeň, S., Krajmerová, D., 2012: Adaptation to common optimum in different populations of Nor-way spruce (Picea abies Karst.). European Journal of Forest Research, 131:401–411.10.1007/s10342-011-0512-6Search in Google Scholar

Gulnyashkin, A. V., Anashenkov, S. S., Varlamov, D. V., 2014: Study results of ecological adaptability of new early ripening hybrids of maize grain farm in Russia. Zernovoe Khozyajstvo Rossii, 4:31–36. [in Russian].Search in Google Scholar

Iroshnikov, A. I. 2002: On the concept and the program of genetic monitoring of forest woody plant populations. Lesovedenie, 1:58–64. [in Russian].Search in Google Scholar

Kang, M. S., Miller, J. D., Darrah, L. L., 1987: A note on relationship between stability variance and ecovalence. Journal of Heredity, 78:107.10.1093/oxfordjournals.jhered.a110322Search in Google Scholar

Kapeller, S., Lexer, M. J., Geburek, T., Hiebl, J., Schueler, S., 2012: Intraspecific variation in climate response of Norway spruce in the eastern Alpine range: Selecting appropriate provenances for future climate. Forest Ecology and Management, 271:46–57.10.1016/j.foreco.2012.01.039Search in Google Scholar

Kapeller, S., Schüler, S., 2012: Alternative, adapted seed sources handbook & map of trans-alpine provenance regions. Federal Research and Training Centre for Forests, Natural Hazards and Landscape, Vienna, 8 p.Search in Google Scholar

Krasnova, Y. S., Shamanin, V. P., Petukhovsky, S. L., Kirilyuk, L. M., 2014: Ecological plasticity of grades of the soft springwheat in the conditions of the southern forest-steppe of Western Siberia. Sovremennye Problemy Nauki i Obrazovaniya. 6:1633. [in Russian].Search in Google Scholar

Korzun, O. S., Bruilo, A. S., 2011: Adaptive features of plant breeding and seed crops. GSAU, Grodno, 140 p. [in Russian].Search in Google Scholar

Lindgren, D., Persson, A., 1995: Vitalization of results from provenance tests. In: Pälvinen, R., Vanclay, J., Minna, S. (eds.): Caring for the Forest: Research in a Changing World. IUFRO XX World Congress, August 6–12 1995, Tampere, Finland, 249 p.Search in Google Scholar

Mátyás, Cs., 2006: Migratory, genetic and phenetic response potential of forest tree populations facing climate change. Acta Silvatica et Lignaria Hungarica, 2:33–46.Search in Google Scholar

Melnikova, M. N., Petrov, N. B., Lomov, A. A., la Porta, N., Politov, D. V., 2012: Testing microsatellite primer with different populations of Eurasian spruces Picea abies (L.) Karst. and Picea obovata (Ledeb.). Russian Journal of Genetics, 48:562–566.10.1134/S1022795412050158Search in Google Scholar

Nakvasina, E. N., Yudina, O. A., Prozherina, N. A., Kamalova, I. I., Minin, N. S., 2008: Provenance test in gene-ecological studies in the European North. Arkhangelsk, 307 p. [in Russian].Search in Google Scholar

Nakvasina, E. N., 2003: Provenance tests of Scots pine (Pinus sylvestris L.) as a natural model of imitation of climatic changes. Vestnik Pomorskogo Universiteta, 2:48–53. [in Russian].Search in Google Scholar

Nakvasina, E. N., 2014: Changes in the generic sphere of Scots pine in the imitation of climate warming. Izvestiya Sankt-Peterburgskoj Lesotekhnicheskoj Akademii, 209:114–125. [in Russian].Search in Google Scholar

Nakvasina, E. N., Tarkhanov, S. N., Ulissova, N. V., Sizov, I. I., Bedritskaya, T. V., 1990: Northern forests: state, dynamics, anthropogenic impact. In: Pisarenko, A. I. (ed.): Proceedings of international conference Arkhangelsk, (Russia): USSR State Forest Agency, 2:131–140. [in Russian].Search in Google Scholar

Nakvasina, E. N., Gvozdukhina, O. A., 2005: An assessment of the state and growth of pine and spruce provenance tests in the Arkhangelsk Region. Problems of Forest Science and Forestry. Proceedings of conference Arkhangelsk (Russia): AGTU, p. 58–63. [in Russian].Search in Google Scholar

Nakvasina, E. N., Yudina, O. A., Pokatilo, A. V., 2016: Growth and reproductive reactions Picea abies (L.) Karst. × P. obovata Ledeb. in simulated climate warming. Arctic Environmental Research, 1:89–96. [in Russian].10.17238/issn2227-6572.2016.1.89Search in Google Scholar

O’Neill, G. A., Hamann, A., Wang, T., 2008: Accounting for population variation improves estimates of the impact of climate change on species growth and distribution. Journal of Applied Ecology, 45:1040–1049.10.1111/j.1365-2664.2008.01472.xSearch in Google Scholar

Orlova, L. V., Egorov, A. A., 2010: By taxonomy and geographical distribution of Finnish spruce (Picea fennica (Regel) Kom., Pinaceae). Novosti Sistematiki Vysshykh Rastenij, 42:5–23. [in Russian].10.31111/novitates/2011.42.5Search in Google Scholar

Persson, B., 1998: Will climate change affect the optimal choice of Pinus sylvestris provenances? Silva Fennica, 32:121–128.10.14214/sf.690Search in Google Scholar

Petrov, S. A., 1984: Recommendations for the use of genetic and statistical methods in the selection of forest species on productivity. Voronezh, 43 p. [in Russian].Search in Google Scholar

Petrov, S. A., 1987: Genetic resources of forest-forming species, ways of their formation and rational use. Lesorazvedenie i lesomelioratsiya, 1:1–30. [in Russian].Search in Google Scholar

Popov, P. P., 2005. Spruce European and Siberian. Science, Novosibirsk, 231 p. [in Russian].Search in Google Scholar

Potokina, E. K., Kiseleva, A. A., Nikolaeva, M. A., Ivanov, S. A., Uljanich, P. S., Potokin, A. F., 2015: Analysis of polymorphism of organelle DNA to elucidate the phylogeography of Norway spruce in the East European Plain. Russian Journal of Genetics: Applied Research, 5:430–439.10.1134/S2079059715040176Search in Google Scholar

Pravdin, L. F., 1975: Norway spruce and Siberian spruce in the USSR. Science, Moscow, 176 p. [in Russian].Search in Google Scholar

Price, T. D., Qvarnström, A., Irwin, D. E., 2003: The role of phenotypic plasticity in driving genetic evolution. Proceedings of the Royal Society B: Biological Sciences, 270:1433–1440.10.1098/rspb.2003.2372169140212965006Search in Google Scholar

Prokazin, E. P., 1972: Program and methods of work. The study of available and creation of new provenance trial. VNIILM, Pushkino, 52 p. [in Russian].Search in Google Scholar

Rodin, A. R., Prokazin, A. E. 1996: About study problems of provenance trial of basic forest species. Lesnoe khozjajstvo, 4:16–18. [in Russian].Search in Google Scholar

Rodin, A. R., Prokazin, A. E., 1997: Study of geographic variation of the main forest-forming species. In: Kharin, O. A. (ed.): Forest use and reproduction of forest resources, Moscow, p. 70–75. [in Russian].Search in Google Scholar

Rone, V. M., 1979: Methods of genetic analysis and selection in populations of spruce. Doctoral Thesis in Biology, Institute of General Genetics of USSR Academy of Sciences, Moscow, 36 p. [in Russian].Search in Google Scholar

Savolainen, O., Bokma, F., Garcia-Gil, R., Repo, T., 2004: Genetic variation in cessation of growth and frost hardiness and consequences for adaptation of Pinus sylvestris to climatic changes. Forest Ecology and Management, 197:79–89.10.1016/j.foreco.2004.05.006Search in Google Scholar

Scapim, C. A., Oliveira, V. R., Brassini, A. de L., Cruz, C. D., de Bastos Andrade, C. A., Gonçalves Vidigal, M. C., 2000: Yield stability in maize (Zea mays L.) and correlations among the parameters of the Eberhart and Russell, Lin and Binns and Huehn models. Genetics and Molecular Biology, 23:387–393.10.1590/S1415-47572000000200025Search in Google Scholar

Shukla, G. K., 1972: Genotype stability analysis and its application to potato regional trails. Crop Science, 11:184–190.10.2135/cropsci1971.0011183X001100020006xSearch in Google Scholar

Shutyaev, A. M., 1990: Basics forest seeds zoning. In: Veretennikov, A. V. (ed.): Increased productivity, sustainability and the protective role of forest ecosystems. Voronezh, Russia, p. 62–66. [in Russian].Search in Google Scholar

Shutyaev, A. M., Giertych, M., 1997: Height growth variation in a comprehensive Eurasian provenance experiment of (Pinus sylvestris L.). Silvae Genetica, 46:332–349.Search in Google Scholar

Shutyaev, A. M., Giertych, M., 2000: Genetic subdivisions of the range of Scots pine (Pinus sylvestris L.) based on a transcontinental provenance experiment. Silvae Genetica, 49:24–38.Search in Google Scholar

Suvanto, S., Nöjd, P., Henttonen, H. M., Beuker, E., Mäkinen, H., 2016: Geographical patterns in the radial growth response of Norway spruce provenances to climatic variation. Agricultural and Forest Meteorology, 222:10–20.10.1016/j.agrformet.2016.03.003Search in Google Scholar

Tarkhanov, S. N., 1998: Variability of spruce in the provenance tests of the Komi Republic. Ekaterinburg, 194 p. [in Russian].Search in Google Scholar

Wricke, G., 1962. Über eine Methods zur Erfassung der ökologisches Streubreite in Feldversuchen. Zeitschrift für Pflanzenzüchtung, 47:92–96.Search in Google Scholar

Recommended articles from Trend MD