1. bookVolume 23 (2023): Edition 2 (April 2023)
Détails du magazine
License
Format
Magazine
eISSN
2300-8733
Première parution
25 Nov 2011
Périodicité
4 fois par an
Langues
Anglais
Accès libre

Immune status of piglets during the first week of life: Current knowledge, significance and assessment – a review

Publié en ligne: 03 May 2023
Volume & Edition: Volume 23 (2023) - Edition 2 (April 2023)
Pages: 391 - 403
Reçu: 15 Jul 2022
Accepté: 21 Oct 2022
Détails du magazine
License
Format
Magazine
eISSN
2300-8733
Première parution
25 Nov 2011
Périodicité
4 fois par an
Langues
Anglais

Bailey M., Haverson K., Inman C., Harris C., Jones P., Corfield G., Miller B., Stokes C. (2005). The development of the mucosal immune system pre- and post-weaning: balancing regulatory and effector function. Proc. Nutr. Soc., 64: 451–457. Search in Google Scholar

Bandrick M., Pieters M., Pijoan C., Molitor T.W. (2008). Passive transfer of maternal Mycoplasma hyopneumoniae-specific cellular immunity to piglets. Clin. Vaccine Immunol., 15: 540–543. Search in Google Scholar

Bandrick M., Pieters M., Pijoan C., Baidoo S.K., Molitor T.W. (2011). Effect of cross-fostering on transfer of maternal immunity to Mycoplasma hyopneumoniae to piglets. Vet. Record, 168: 100–100. Search in Google Scholar

Bandrick M., Ariza-Niet C., Baidoo S.K., Molitor T.W. (2014). Colostral antibody-mediated and cell-mediated immunity contributes to innate and antigen-specific immunity in piglets. Dev. Comp. Immunol., 43: 114–120. Search in Google Scholar

Belt W.D., Anderson L.L., Cavazos L.F., Melampy R.M. (1971). Cytoplasmic granules and relaxin levels in porcine corpora lutea. Endocrinology, 89: 1–10. Search in Google Scholar

Bland I.M., Rooke J.A., Bland V.C., Sinclair A.G., Edwards S.A. (1999). The acquisition of IgG from colostrum by piglets. Proc. British Society of Animal Science. Cambridge University Press, pp. 189–189. Burrin D.G., Shulman R.J., Reeds P.J., Davis T.A., Gravitt K.R. (1992). Porcine colostrum and milk stimulate visceral organ and skeletal muscle protein synthesis in neonatal piglets. J. Nutr., 122: 1205–1213. Search in Google Scholar

Butler J.E., Sun J., Weber P., Navarro P., Francis D. (2000). Antibody repertoire development in fetal and newborn piglets, III. Colonization of the gastrointestinal tract selectively diversifies the preimmune repertoire in mucosal lymphoid tissues. Immunology, 100: 119–130. Search in Google Scholar

Cabrera R.A., Lin X., Campbell J.M., Moeser A.J., Odle J. (2012). Influence of birth order, birth weight, colostrum and serum immunoglobulin G on neonatal piglet survival. J. Anim. Sci. Biotechnol., 3: 42. Search in Google Scholar

Cukrowska B., Sinkora J., Reháková Z., Sinkora M., Splíchal I., Tucková L., Avrameas S., Saalmüller A., Barot-Ciorbaru R., Tlaskalová-Hogenová H. (1996). Isotype and antibody specificity of spontaneously formed immunoglobulins in pig fetuses and germ-free piglets: production by CD5- B cells. Immunology, 88: 611–617. Search in Google Scholar

Curtis J., Bourne F.J. (1973). Half-lives of immunoglobulins IgG, IgA and IgM in the serum of new-born pigs. Immunology, 24: 147–155. Search in Google Scholar

Devillers N., Le Dividich J., Prunier A. (2011). Influence of colostrum intake on piglet survival and immunity. Animal, 5: 1605–1612. Search in Google Scholar

Elahi S., Thompson D.R., Van Kessel J., Babiuk L.A., Gerdts V. (2017). Protective role of passively transferred maternal cytokines against Bordetella pertussis infection in newborn piglets. Infect. Immun., 85: e01063-16. Search in Google Scholar

Forner R., Bombassaro G., Bellaver F.V., Maciag S., Fonseca F.N., Gava D., Lopes L., Marques M.G., Bastos A.P. (2021). Distribution difference of colostrum-derived B and T cells subsets in gilts and sows. PLoS One, 16: e0249366. Search in Google Scholar

Fort M., Sibila M., Pérez-Martín E., Nofrarías M., Mateu E., Segalés J. (2009). One dose of a porcine circovirus 2 (PCV2) sub-unit vaccine administered to 3-week-old conventional piglets elicits cellmediated immunity and significantly reduces PCV2 viremia in an experimental model. Vaccine, 27: 4031–4037. Search in Google Scholar

Goubier A., Piras F., Gnudi M., Chapat L., El Garch H., Joisel F., Charreyre C., Richard S., Forest L., Andreoni C., Juillard V. (2009). Colostrum from sows vaccinated with an inactivated PCV2 vaccine contains antigen-specific leukocytes. Vet. Immunol. Immunopathol., 1: 265. Search in Google Scholar

Hlavova K., Stepanova H., Faldyna M. (2014). The phenotype and activation status of T and NK cells in porcine colostrum suggest these are central/effector memory cells. Vet. J., 202: 477–482. Search in Google Scholar

Inoue R., Tsukahara T. (2021). Composition and physiological functions of the porcine colostrum. Anim. Sci. J., 92: e13618. Search in Google Scholar

Jabłoński A., Strawa M., Stadejek T. (2011). Impact of selected parameters on efficacy of pen based oral fluid collection from pigs. Proc. 6th International Symposium on Emerging and Re-emerging Pig Diseases, 59. Search in Google Scholar

Jensen P.T., Pedersen K.B. (1979). Studies on immunoglobulins and trypsin inhibitor in colostrum and milk from sows and in serum of their piglets. Acta Vet. Scand., 20: 60–72. Search in Google Scholar

Kielland C., Rootwelt V., Reksen O., Framstad T. (2015). The association between immunoglobulin G in sow colostrum and piglet plasma. J. Anim. Sci., 93: 4453–4462. Search in Google Scholar

Kittawornrat A., Panyasing Y., Goodell C., Wang C., Gauger P., Harmon K., Rauh R., Desfresne L., Levis I., Zimmerman J. (2014). Porcine reproductive and respiratory syndrome virus (PRRSV) surveillance using pre-weaning oral fluid samples detects circulation of wild-type PRRSV. Vet. Microbiol., 168: 331–339. Search in Google Scholar

Klobasa F., Werhahn E., Butler J.E. (1981). Regulation of humoral immunity in the piglet by immunoglobulins of maternal origin. Res. Vet. Sci., 31: 195–206. Search in Google Scholar

Klobasa F., Butler J.E., Werhahn E., Habe F. (1986). Maternal-neonatal immunoregulation in swine. II. Influence of multiparity on de novo immunoglobulin synthesis by piglets. Vet. Immunol. Immunopathol., 11: 149–159. Search in Google Scholar

Klobasa F., Werhahn E., Butler J.E. (1987). Composition of sow milk during lactation. J. Anim. Sci., 64: 1458–1466. Search in Google Scholar

Le Jan C. (1996). Cellular components of mammary secretions and neonatal immunity: a review. Vet. Res., 27: 403–417. Search in Google Scholar

Levast B., de Monte M., Chevaleyre C., Melo S., Berri M., Mangin F., Zanello G., Lantier I., Salmon H., Meurens F. (2010). Ultraearly weaning in piglets results in low serum IgA concentration and IL17 mRNA expression. Vet. Immunol. Immunopathol., 137: 261–268. Search in Google Scholar

Levast B., Berri M., Wilson H.L., Meurens F., Salmon H. (2014). Development of gut immunoglobulin A production in piglet in response to innate and environmental factors. Dev. Comp. Immunol., 44: 235–244. Search in Google Scholar

Llamas Moya S., Boyle L.A., Lynch P.B., Arkins S. (2007). Age-related changes in pro-inflammatory cytokines, acute phase proteins and cortisol concentrations in neonatal piglets. Neonatology, 91: 44–48. Search in Google Scholar

López W., Zimmerman J., Gauger P., Harmon K., Magtoto R., Bradner L., Holtkamp D., Zhang M., Zhang J., Ramirez A., Linhares D., Giménez-Lirola L. (2022). Considerations in the use of processing fluids for the detection of PRRSV RNA and antibody. J. Vet. Diagn. Invest., 34: 859–863. Search in Google Scholar

Maciag S.S., Bellaver F.V., Bombassaro G., Haach V., Morés M.A.Z., Baron L.F., Coldebella A., Bastos A.P. (2022). The influence of source of porcine colostrum in development of early immune ontogeny in the piglet. (preprint; https://doi.org/10.21203/rs.3.rs-1486260/v1) Search in Google Scholar

Maradiaga N., Aldridge B., Zeineldin M., Lowe J. (2018). Gastrointestinal microbiota and mucosal immune gene expression in neonatal pigs reared in a cross-fostering model. Microb. Pathog., 121: 27–39. Search in Google Scholar

Markowska-Daniel I., Pomorska-Mól M. (2010). Shifts in immunoglobulins levels in the porcine mammary secretions during whole lactation period. Bull. Vet. Inst. Pulawy, 54: 345–349. Search in Google Scholar

Markowska-Daniel I., Pomorska-Mól M., Pejsak Z. (2010). Dynamic changes of immunoglobulin concentrations in pig colostrum and serum around parturition. Pol. J. Vet. Sci., 13: 21–27. Search in Google Scholar

Martin M., Tesouro M.A., González-Ramón N., Piñeiro A., Lampreave F. (2005). Major plasma proteins in pig serum during postnatal development. Reprod. Fert. Develop., 17: 439–445. Search in Google Scholar

Martínez-Boixaderas N., Garza-Moreno L., Sibila M., Segalés J. (2022). Impact of maternally derived immunity on immune responses elicited by piglet early vaccination against the most common pathogens involved in porcine respiratory disease complex. Porcine Health Manag., 8: 1–12. Search in Google Scholar

Mazzoni M., Bosi P., De Sordi N., Lalatta-Costerbosa G. (2011). Distribution, organization and innervation of gastric MALT in conventional piglet. J. Anat., 219: 611–621. Search in Google Scholar

Nechvatalova K., Kudlackova H., Leva L., Babickova K., Faldyna M. (2011). Transfer of humoral and cell-mediated immunity via colostrum in pigs. Vet. Immunol. Immunopathol., 142: 95–100. Search in Google Scholar

Nguyen T.V., Yuan L., Azevedo M.S., Jeon K.I., Gonzalez A.M., Saif L.J. (2007). Transfer of maternal cytokines to suckling piglets: in vivo and in vitro models with implications for immunomodulation of neonatal immunity. Vet. Immunol. Immunopathol., 117: 236–248. Search in Google Scholar

Ogawa S., Tsukahara T., Tsuruta T., Nishibayashi R., Okutani M., Nakatani M., Higashide K., Iida S., Nakanishi N., Ushida K., Inoue R. (2014 a). Evaluation of secretion volume and immunoglobulin A and G concentrations in sow colostrum from anterior to posterior teats. Anim. Sci. J., 85: 678–682. Search in Google Scholar

Ogawa S., Tsukahara T., Nishibayashi R., Nakatani M., Okutani M., Nakanishi N., Ushida K., Inoue R. (2014 b). Shotgun proteomic analysis of porcine colostrum and mature milk. Anim. Sci. J., 85: 440–448. Search in Google Scholar

Opriessnig T., Yu S., Thacker E.L., Halbur P.G. (2004). Derivation of porcine circovirus type 2-negative pigs from positive breeding herds. J. Swine Health Prod., 12: 186–191. Search in Google Scholar

Pomorska-Mól M., Markowska-Daniel I. (2009). Siara jako źródło odporności humoralnej oraz komórkowej dla prosiąt osesków (in Polish). Med. Weter., 65: 237–240. Search in Google Scholar

Pomorska-Mól M., Markowska-Daniel I. (2010 a). Immunological status of piglets during the first weeks of life (in Polish). Med. Weter., 66: 593–596. Search in Google Scholar

Pomorska-Mól M., Markowska-Daniel I. (2010 b). Prenatal ontogeny of lymphocytes in pigs (in Polish). Med. Weter., 1: 17–21. Search in Google Scholar

Pomorska-Mól M., Markowska-Daniel I. (2011). Age-dependent changes in relative and absolute size of lymphocyte subsets in the blood of pigs from birth to slaughter. Bull. Vet. Inst. Pulawy, 55: 305–310. Search in Google Scholar

Pomorska-Mól M., Markowska-Daniel I., Bednarek D. (2010). Flow cytometric analysis of leukocytes in porcine mammary secretions. Bull. Vet. Inst. Pulawy, 54: 188–192. Search in Google Scholar

Poonsuk K., Zimmerman J. (2018). Historical and contemporary aspects of maternal immunity in swine. Anim. Health Res. Rev., 19: 31–45. Search in Google Scholar

Porter P., Hill I.R. (1970). Serological changes in immunoglobulins IgG, IgA and IgM and Escherichia coli antibodies in the young pig. Immunology, 18: 565–573. Search in Google Scholar

Pravieux J.J., Poulet H., Charreyre C., Juillard V. (2007). Protection of newborn animals through maternal immunization. J. Comp. Pathol., 137: 32–34. Search in Google Scholar

Prickett J.R., Zimmerman J.J. (2010). The development of oral fluidbased diagnostics and applications in veterinary medicine. Anim. Health Res. Rev., 11: 207–216. Search in Google Scholar

Prickett J.R., Kim W., Simer R., Yoon K.J., Zimmerman J. (2008). Oral-fluid samples for surveillance of commercial growing pigs for porcine reproductive and respiratory syndrome virus and porcine circovirus type 2 infections. J. Swine Health Prod., 16: 86–91. Search in Google Scholar

Ramirez A., Wang C., Prickett J.R., Pogranichniy R., Yoon K.J., Main R., Johnson J.K., Rademacher C., Hoogland M., Hoffmann P., Kurtz A., Kurtz E., Zimmerman J. (2012). Efficient surveillance of pig populations using oral fluids. Prev. Vet. Med., 104: 292–300. Search in Google Scholar

Rooke J.A., Bland I.M. (2002). The acquisition of passive immunity in the new-born piglet. Livest. Prod. Sci., 78: 13–23. Search in Google Scholar

Rooke J.A., Carranca C., Bland I.M., Sinclair A.G., Ewen M., Bland V.C., Edwards S.A. (2003). Relationships between passive absorption of immunoglobulin G by the piglet and plasma concentrations of immunoglobulin G at weaning. Livest. Prod. Sci., 81: 223–234. Search in Google Scholar

Rothkötter H.J., Ulbrich H., Pabst R. (1991). The postnatal development of gut lamina propria lymphocytes: number, proliferation, and T and B cell subsets in conventional and germ-free pigs. Pediatr. Res., 29: 237–242. Search in Google Scholar

Rowland R.R. (2010). The interaction between PRRSV and the late gestation pig fetus. Virus Res., 154: 114–122. Search in Google Scholar

Quesnel H., Farmer C., Devillers N. (2012). Colostrum intake: Influence on piglet performance and factors of variation. Livest. Sci., 146: 105–114. Search in Google Scholar

Saalmüller A., Werner T., Fachinger V. (2002). T-helper cells from naive to committed. Vet. Immunol. Immunopathol., 87: 137–45. Search in Google Scholar

Salmon H. (1999). The mammary gland and neonate mucosal immunity. Vet. Immunol. Immunopathol., 72: 143–155. Search in Google Scholar

Sattler T., Wodak E., Schmoll F. (2015). Evaluation of the specificity of a commercial ELISA for detection of antibodies against porcine respiratory and reproductive syndrome virus in individual oral fluid of pigs collected in two different ways. BMC Vet. Res., 11: 70. Schnapper A., Uhr G., Meyer W. (2003). Growth kinetics of porcine lymphatic organs during early postnatal life. Anat. Histol. Embryol., 32: 297–304. Search in Google Scholar

Schultz R. (2006). Transfer of humoral and cellular immunity through colostrum. Proc. Merial European Vaccinology Symposium. 58. Search in Google Scholar

Šinkora M., Butler J.E. (2009). The ontogeny of the porcine immune system. Dev. Comp. Immunol., 33: 273–283. Search in Google Scholar

Šinkora M., Sinkora J., Reháková Z., Splíchal I., Yang H., Parkhouse R.M., Trebichavsk I. (1998 a). Prenatal ontogeny of lymphocyte subpopulations in pigs. Immunology, 95: 595–603. Search in Google Scholar

Šinkora J., Reháková Z., Sinkora M., Cukrowska B., Tlaskalová-Hogenová H., Bianchi A.T., De Geus B. (1998 b). Expression of CD2 on porcine B lymphocytes. Immunology, 95: 443–449. Search in Google Scholar

Šinkora J., Rehakova Z., Sinkora M., Cukrowska B., Tlaskalova-Hogenova H. (2002). Early development of immune system in pigs. Vet. Immunol. Immunopathol., 87: 301–306. Search in Google Scholar

Solano-Aguilar G.I., Vengroski K.G., Beshah E., Douglass L.W., Lunney J.K. (2001). Characterization of lymphocyte subsets from mucosal tissues in neonatal swine. Dev. Comp. Immunol., 25: 245–263. Search in Google Scholar

Splichal I., Bonneau M., Charley B. (1994). Ontogeny of interferon alpha secreting cells in the porcine fetal hematopoietic organs. Immunol. Lett., 43: 203–208. Search in Google Scholar

Springer S., Selbitz H.J. (1999). The control of necrotic enteritis in sucking piglets by means of a Clostridium perfringens toxoid vaccine. FEMS Immunol. Med. Microbiol., 24: 333–336. Search in Google Scholar

Stepanova H., Samankova P., Leva L., Sinkora J., Faldyna M. (2007). Early postnatal development of the immune system in piglets: the redistribution of T lymphocyte subsets. Cell Immunol., 249: 73–79. Search in Google Scholar

Talker S.C., Käser T., Reutner K., Sedlak C., Mair K.H., Koinig H., Graage R., Viehmann M., Klingler E., Ladinig A., Ritzmann M., Saalmüller A., Gerner W. (2013). Phenotypic maturation of porcine NK- and T-cell subsets. Dev. Comp. Immunol., 40: 51–68. Search in Google Scholar

Trebichavský I., Splíchal I., Barot-Ciorbaru R. (1995). Expression of TNF-alpha in pig fetal cells stimulated in vitro. Folia Microbiol. (Praha), 40: 417–420. Search in Google Scholar

Trebichavský I., Tlaskalová H., Cukrowska B., Splíchal I., Šinkora J., Oeháková Z., Šinkora M., Pospísil R., Kováøù F., Charley B., Binns R., White A. (1996). Early ontogeny of immune cells and their functions in the fetal pig. Vet. Immunol. Immunopathol., 54: 75–81. Search in Google Scholar

Trevisan G., Jablonski E., Angulo J., López W.A., Linhares D.C.L. (2019). Use of processing fluid samples for longitudinal monitoring of PRRS virus in herds undergoing virus elimination. Porcine Health Manag., 5: 18. Search in Google Scholar

Tuboly S., Bernáth S., Glávits R., Kovács A., Megyeri Z. (1995). Intestinal absorption of colostral lymphocytes in newborn lambs and their role in the development of immune status. Acta Vet. Hung., 43: 105–115. Search in Google Scholar

Turlewicz-Podbielska H., Włodarek J., Pomorska-Mól M. (2020). Noninvasive strategies for surveillance of swine viral diseases: a review. J. Vet. Diagn. Invest., 32: 503–512. Search in Google Scholar

Wagstrom E.A., Yoon K.J., Zimmerman J.J. (2000). Immune components in porcine mammary secretions. Viral Immunol., 13: 383–397. Search in Google Scholar

Ward L.A., Rich E.D., Besser T.E. (1996). Role of maternally derived circulating antibodies in protection of neonatal swine against porcine group A rotavirus. J. Infect. Dis., 174: 276–282. Search in Google Scholar

Williams P.P. (1993). Immunomodulating effects of intestinal absorbed maternal colostral leukocytes by neonatal pigs. Can. J. Vet. Res., 57: 1–8. Search in Google Scholar

Yang W.C., Schultz R.D. (1986). Ontogeny of natural killer cell activity and antibody-dependent cell mediated cytotoxicity in pigs. Dev. Comp. Immunol., 10: 405–418. Search in Google Scholar

Articles recommandés par Trend MD