[
Bailey M., Haverson K., Inman C., Harris C., Jones P., Corfield G., Miller B., Stokes C. (2005). The development of the mucosal immune system pre- and post-weaning: balancing regulatory and effector function. Proc. Nutr. Soc., 64: 451-457.
]Search in Google Scholar
[
Bandrick M., Pieters M., Pijoan C., Molitor T.W. (2008). Passive transfer of maternal Mycoplasma hyopneumoniae-specific cellular immunity to piglets. Clin. Vaccine Immunol., 15: 540-543.
]Search in Google Scholar
[
Bandrick M., Ariza-Niet, C., Baidoo S.K., Molitor T.W. (2014). Colostral antibody-mediated and cell-mediated immunity contributes to innate and antigen-specific immunity in piglets. Dev. Comp. Immunol., 43: 114-120.
]Search in Google Scholar
[
Bandrick M., Pieters M., Pijoan C., Baidoo S. K., Molitor T. W. (2011). Effect of cross‐ fostering on transfer of maternal immunity to mycoplasma hyopneumoniae to piglets. Veterinary Record, 168: 100-100.
]Search in Google Scholar
[
Belt W.D., Anderson L.L., Cavazos L.F., Melampy R.M. (1971). Cytoplasmic granules and relaxin levels in porcine corpora lutea. Endocrinology, 89: 1-10.
]Search in Google Scholar
[
Bland I.M., Rooke J.A., Bland V.C., Sinclair A.G., Edwards S.A. (1999). The acquisition of IgG from colostrum by piglets. In Proceedings of the British Society of Animal Science. Cambridge University Press, 189-189.10.1017/S1752756200003446
]Search in Google Scholar
[
Burrin D.G., Shulman R..J., Reeds P.J., Davis T.A., Gravitt K.R. (1992). Porcine colostrum and milk stimulate visceral organ and skeletal muscle protein synthesis in neonatal piglets. J. Nutr., 122: 1205-1213.
]Search in Google Scholar
[
Butler J.E., Sun J., Weber P., Navarro P., Francis D. (2000). Antibody repertoire development in fetal and newborn piglets, III. Colonization of the gastrointestinal tract selectively diversifies the preimmune repertoire in mucosal lymphoid tissues. Immunology, 100: 119-30.
]Search in Google Scholar
[
Cabrera R.A., Lin X., Campbell J.M., Moeser A.J., Odle J. (2012). Influence of birth order, birth weight, colostrum and serum immunoglobulin G on neonatal piglet survival. J. Anim. Sci. Biotechnol., 3: 42.
]Search in Google Scholar
[
Cukrowska B., Sinkora J., Reháková Z., Sinkora M., Splíchal I., Tucková L., Avrameas S., Saalmüller A., Barot-Ciorbaru R., Tlaskalová-Hogenová H. (1996). Isotype and antibody specificity of spontaneously formed immunoglobulins in pig fetuses and germ-free piglets: production by CD5-B cells. Immunology, 88: 611-617.
]Search in Google Scholar
[
Curtis J., Bourne F.J. (1973). Half-lives of immunoglobulins IgG, IgA and IgM in the serum of new-born pigs. Immunology, 24: 147-155.
]Search in Google Scholar
[
Devillers N., Le Dividich J., Prunier, A. (2011). Influence of colostrum intake on piglet survival and immunity. Animal, 5: 1605-1612.
]Search in Google Scholar
[
Elahi S., Thompson D.R., Van Kessel J., Babiuk L.A., Gerdts V. (2017). Protective Role of Passively Transferred Maternal Cytokines against Bordetella pertussis Infection in Newborn Piglets. Infect. Immun., 85: e01063-16.
]Search in Google Scholar
[
Forner R., Bombassaro G., Bellaver F.V., Maciag S., Fonseca F.N., Gava D., Lopes L., Marques M.G., Bastos A.P. (2021). Distribution difference of colostrum-derived B and T cells subsets in gilts and sows. PLoS One, 16: e0249366.
]Search in Google Scholar
[
Fort M., Sibila M., Pérez-Martín E., Nofrarías M., Mateu E., Segalés J. (2009). One dose of a porcine circovirus 2 (PCV2) sub-unit vaccine administered to 3-week-old conventional piglets elicits cell-mediated immunity and significantly reduces PCV2 viremia in an experimental model. Vaccine, 27: 4031-4037.
]Search in Google Scholar
[
Goubier A., Piras F., Gnudi M., Chapat L., El Garch H., Joisel F., Charreyre C., Richard S., Forest L., Andreoni C., Juillard V. (2009). Colostrum from sows vaccinated with an inactivated PCV2 vaccine contains antigen-specific leukocytes. Vet. Immunol. Immunopathol., 1: 265.
]Search in Google Scholar
[
Hlavova K., Stepanova H., Faldyna M. (2014). The phenotype and activation status of T and NK cells in porcine colostrum suggest these are central/effector memory cells. Vet. J., 202: 477-482.
]Search in Google Scholar
[
Inoue R., Tsukahara T. (2021). Composition and physiological functions of the porcine colostrum. Anim. Sci. J., 92: e13618.
]Search in Google Scholar
[
Jabłonski A., Strawa M., Stadejek T. (2011). Impact of selected parameters on efficacy of pen based oral fluid collection from pigs. 6th International Symposium on Emerging and Re-emerging Pig Diseases: 59
]Search in Google Scholar
[
Jensen P.T., Pedersen K.B. (1797). Studies on immunoglobulins and trypsin inhibitor in colostrum and milk from sows and in serum of their piglets. Acta Vet. Scand., 20: 60-72.
]Search in Google Scholar
[
Kielland C., Rootwelt V., Reksen O., Framstad T. (2015). The association between immunoglobulin G in sow colostrum and piglet plasma. J. Anim. Sci., 93: 4453-4462.
]Search in Google Scholar
[
Kittawornrat A., Panyasing Y., Goodell C., Wang C., Gauger P., Harmon K., Rauh R., Desfresne L., Levis I., Zimmerman J. (2014). Porcine reproductive and respiratory syndrome virus (PRRSV) surveillance using pre-weaning oral fluid samples detects circulation of wild-type PRRSV. Vet. Microbiol., 168: 331-339.
]Search in Google Scholar
[
Klobasa F., Werhahn E., Butler J.E. (1981). Regulation of humoral immunity in the piglet by immunoglobulins of maternal origin. Res. Vet. Sci., 31: 195-206.
]Search in Google Scholar
[
Klobasa F., Butler J.E., Werhahn E., Habe F. (1986). Maternal-neonatal immunoregulation in swine. II. Influence of multiparity on de novo immunoglobulin synthesis by piglets. Vet. Immunol. Immunopathol., 11: 149-159.
]Search in Google Scholar
[
Klobasa F., Werhahn E., Butler J.E. (1987). Composition of sow milk during lactation. J. Anim. Sci., 64: 1458-1466.
]Search in Google Scholar
[
Le Jan C. (1996). Cellular components of mammary secretions and neonatal immunity: a review. Vet. Res., 27: 403-417.
]Search in Google Scholar
[
Levast B., de Monte M., Chevaleyre C., Melo S., Berri M., Mangin F., Zanello G., Lantier I., Salmon H., Meurens F. (2010). Ultra-early weaning in piglets results in low serum IgA concentration and IL17 mRNA expression. Vet. Immunol. Immunopathol., 137: 261-268.
]Search in Google Scholar
[
Levast B., Berri M., Wilson H.L., Meurens F., Salmon H. (2014). Development of gut immunoglobulin A production in piglet in response to innate and environmental factors. Dev. Comp. Immunol., 44: 235-44.
]Search in Google Scholar
[
Llamas Moya S., Boyle L.A., Lynch P.B., Arkins S. (2007). Age-related changes in pro-inflammatory cytokines, acute phase proteins and cortisol concentrations in neonatal piglets. Neonatology, 91: 44-48.
]Search in Google Scholar
[
López W., Zimmerman J., Gauger P., Harmon K., Magtoto R., Bradner L., Holtkamp D., Zhang M., Zhang J., Ramirez A., Linhares D., Giménez-Lirola L. (2022). Considerations in the use of processing fluids for the detection of PRRSV RNA and antibody. J. Vet. Diagn. Invest., 34: 859-863.
]Search in Google Scholar
[
Maciag S.S., Bellaver F.V., Bombassaro G., Haach V., Morés M.A.Z., Baron L.F., Coldebella A., Bastos A.P. (2022). The influence of source of porcine colostrum in development of early immune ontogeny in the piglet (preprint; https://doi.org/10.21203/rs.3.rs-1486260/v1)
]Search in Google Scholar
[
Maradiaga N., Aldridge B., Zeineldin M., Lowe J. (2018). Gastrointestinal microbiota and mucosal immune gene expression in neonatal pigs reared in a cross-fostering model. Microb. Pathog., 121: 27-39.
]Search in Google Scholar
[
Martin M., Tesouro M.A., González-Ramón N., Piñeiro A., Lampreave F. (2005). Major plasma proteins in pig serum during postnatal development. Reprod. Fertil. Dev., 17: 439-445.
]Search in Google Scholar
[
Martínez-Boixaderas N., Garza-Moreno L., Sibila M., Segalés J. (2022). Impact of maternally derived immunity on immune responses elicited by piglet early vaccination against the most common pathogens involved in porcine respiratory disease complex. Porcine Health Manag., 8: 1-12.
]Search in Google Scholar
[
Markowska-Daniel I., Pomorska-Mól M., Pejsak Z. (2010). Dynamic changes of immunoglobulin concentrations in pig colostrum and serum around parturition. Pol. J. Vet. Sci., 13: 21-27.
]Search in Google Scholar
[
Markowska-Daniel I., Pomorska-Mól M. (2010a). Shifts in immunoglobulins levels in the porcine mammary secretions during whole lactation period. Bull. Vet. Inst. Pulawy, 54: 345-349.
]Search in Google Scholar
[
Mazzoni M., Bosi P., De Sordi N., Lalatta-Costerbosa G. (2011). Distribution, organization and innervation of gastric MALT in conventional piglet. J. Anat. 219: 611-621.
]Search in Google Scholar
[
Nechvatalova K., Kudlackova H., Leva L., Babickova K., Faldyna M. (2011). Transfer of humoral and cell-mediated immunity via colostrum in pigs. Vet. Immunol. Immunopathol., 142: 95-100.
]Search in Google Scholar
[
Nguyen T.V., Yuan L., Azevedo M.S., Jeon, K.I., Gonzalez A.M., Saif L.J. (2007). Transfer of maternal cytokines to suckling piglets: in vivo and in vitro models with implications for immunomodulation of neonatal immunity. Vet. Immunol. Immunopathol., 117: 236-248.
]Search in Google Scholar
[
Ogawa S., Tsukahara T., Tsuruta T., Nishibayashi R., Okutani M., Nakatani M., Higashide K., Iida S., Nakanishi N., Ushida K., Inoue R. (2014a). Evaluation of secretion volume and immunoglobulin A and G concentrations in sow colostrum from anterior to posterior teats. Anim. Sci. J., 85: 678-682.10.1111/asj.1221124798788
]Search in Google Scholar
[
Ogawa S., Tsukahara T., Nishibayashi R., Nakatani M., Okutani M., Nakanishi N., Ushida K., Inoue R. (2014b). Shotgun proteomic analysis of porcine colostrum and mature milk. Anim. Sci. J., 85: 440-448.10.1111/asj.1216524450292
]Search in Google Scholar
[
Opriessnig T., Yu S., Thacker E.L., Halbur P.G. (2004). Derivation of porcine circovirus type 2-negative pigs from positive breeding herds. J. Swine Health Prod., 12: 186-191.
]Search in Google Scholar
[
Pomorska-Mól M., Markowska-Daniel I. (2009). Siara jako źródło odporności humoralnej oraz komórkowej dla prosiąt osesków. Med. Weter., 65: 237-240.
]Search in Google Scholar
[
Pomorska-Mol M., Markowska-Daniel I. (2010a). Status immunologiczny prosięcia w pierwszych tygodniach życia. Med. Weter., 66: 593-596.
]Search in Google Scholar
[
Pomorska-Mól M., Markowska-Daniel I. (2010b). Prenatalna ontogeneza limfocytów u świń. Med. Weter., 1: 17-21.
]Search in Google Scholar
[
Pomorska-Mól M., Markowska-Daniel I., Bednarek D. (2010). Flow cytometric analysis of leukocytes in porcine mammary secretions. Bull. Vet. Inst. Pulawy., 54: 188-192.
]Search in Google Scholar
[
Pomorska-Mól M., Markowska-Daniel I. (2011). Age-dependent changes in relative and absolute size of lymphocyte subsets in the blood of pigs from birth to slaughter. Bull. Vet. Inst. Pulawy, 55: 305-310.
]Search in Google Scholar
[
Poonsuk K., Zimmerman J. (2018). Historical and contemporary aspects of maternal immunity in swine. Anim. Health Res. Rev., 19: 31-45.
]Search in Google Scholar
[
Porter P., Hill I.R. (1970). Serological changes in immunoglobulins IgG, IgA and IgM and Escherichia coli antibodies in the young pig. Immunology, 18: 565-573.
]Search in Google Scholar
[
Pravieux J.J., Poulet H., Charreyre C., Juillard V. (2007). Protection of newborn animals through maternal immunization. J. Comp. Pathol., 137: 32-34.
]Search in Google Scholar
[
Prickett J. R., Kim W., Simer R., Yoon K. J., Zimmerman J. (2008). Oral-fluid samples for surveillance of commercial growing pigs for porcine reproductive and respiratory syndrome virus and porcine circovirus type 2 infections. Journal of Swine Health and Production, 16: 86-91.
]Search in Google Scholar
[
Prickett J. R., Zimmerman J. J. (2010). The development of oral fluid-based diagnostics and applications in veterinary medicine. Animal Health Research Reviews, 11: 207-216.
]Search in Google Scholar
[
Ramirez A., Wang C., Prickett J. R., Pogranichniy R., Yoon K. J., Main R., Johnson J. K., Rademacher C., Hoogland M., Hoffmann P., Kurtz A., Kurtz E., Zimmerman J. (2012). Efficient surveillance of pig populations using oral fluids. Prev. Vet. Med., 104: 292-300.
]Search in Google Scholar
[
Rooke J.A., Bland I. M. (2002). The acquisition of passive immunity in the new-born piglet. Livest. Prod. Sci., 78: 13-23.
]Search in Google Scholar
[
Rooke J.A., Carranca C., Bland I. M., Sinclair A.G., Ewen M., Bland V.C., Edwards S.A. (2003). Relationships between passive absorption of immunoglobulin G by the piglet and plasma concentrations of immunoglobulin G at weaning. Livest. Prod. Sci., 81: 223–234.
]Search in Google Scholar
[
Rothkötter H.J., Ulbrich H., Pabst R. (1991). The postnatal development of gut lamina propria lymphocytes: number, proliferation, and T and B cell subsets in conventional and germ-free pigs. Pediatr. Res., 29: 237-42.
]Search in Google Scholar
[
Rowland R.R. (2010). The interaction between PRRSV and the late gestation pig fetus. Virus Res., 154: 114-122.
]Search in Google Scholar
[
Saalmüller A., Werner T., Fachinger V. (2002). T-helper cells from naive to committed. Vet. Immunol. Immunopathol., 87: 137-45.
]Search in Google Scholar
[
Salmon H. (1999). The mammary gland and neonate mucosal immunity. Vet. Immunol. Immunopathol., 72: 143-155.
]Search in Google Scholar
[
Sattler T., Wodak E., Schmoll F. (2015). Evaluation of the specificity of a commercial ELISA for detection of antibodies against porcine respiratory and reproductive syndrome virus in individual oral fluid of pigs collected in two different ways. BMC Vet. Res., 11:70.
]Search in Google Scholar
[
Schnapper A., Uhr G., Meyer W. (2003). Growth kinetics of porcine lymphatic organs during early postnatal life. Anat. Histol. Embryol., 32: 297-304.
]Search in Google Scholar
[
Schultz R. (2006). Transfer of humoral and cellular immunity through colostrum. Proceedings of Merial European Vaccinology Symposium. 58
]Search in Google Scholar
[
Šinkora M., Sinkora J., Reháková Z., Splíchal I., Yang H., Parkhouse R.M., Trebichavsk I. (1998). Prenatal ontogeny of lymphocyte subpopulations in pigs. Immunology, 95: 595-603.
]Search in Google Scholar
[
Šinkora J., Reháková Z., Sinkora M., Cukrowska B., Tlaskalová-Hogenová H., Bianchi A.T., De Geus B. (1998a). Expression of CD2 on porcine B lymphocytes. Immunology, 95: 443-449.10.1046/j.1365-2567.1998.00621.x13644129824509
]Search in Google Scholar
[
Šinkora J., Rehakova Z., Sinkora M., Cukrowska B., Tlaskalova-Hogenova H. (2002). Early development of immune system in pigs. Vet. Immunol. Immunopathol., 87: 301-306.
]Search in Google Scholar
[
Šinkora M., Butler J.E. (2009). The ontogeny of the porcine immune system. Dev. Comp. Immunol., 33: 273-283.
]Search in Google Scholar
[
Solano-Aguilar G.I., Vengroski K.G., Beshah E., Douglass L.W., Lunney J.K. (2001). Characterization of lymphocyte subsets from mucosal tissues in neonatal swine. Dev. Comp. Immunol., 25: 245-263.
]Search in Google Scholar
[
Splíchal I., Bonneau M., Charley B. (1994). Ontogeny of interferon alpha secreting cells in the porcine fetal hematopoietic organs. Immunol. Lett., 43: 203-208.
]Search in Google Scholar
[
Springer S., Selbitz H.J. (1999). The control of necrotic enteritis in sucking piglets by means of a Clostridium perfringens toxoid vaccine. FEMS Immunol. Med. Microbiol., 24:333–336.
]Search in Google Scholar
[
Stepanova H., Samankova P., Leva L., Sinkora J., Faldyna M. (2007). Early postnatal development of the immune system in piglets: the redistribution of T lymphocyte subsets. Cell Immunol., 249: 73-79.
]Search in Google Scholar
[
Talker S.C., Käser T., Reutner K., Sedlak C., Mair K.H., Koinig H., Graage R., Viehmann M., Klingler E., Ladinig A., Ritzmann M., Saalmüller A., Gerner W. (2013). Phenotypic maturation of porcine NK- and T-cell subsets. Dev. Comp. Immunol., 40: 51-68.
]Search in Google Scholar
[
Trebichavský I., Splíchal I., Barot-Ciorbaru R. (1995). Expression of TNF-alpha in pig fetal cells stimulated in vitro. Folia Microbiol. (Praha), 40: 417-420.
]Search in Google Scholar
[
Trebichavský I., Tlaskalová H., Cukrowska B., Splíchal I., Šinkora J., Oeháková Z., Šinkora M., Pospísil R., Kováøù F., Charley B., Binns R., White A. (1996). Early ontogeny of immune cells and their functions in the fetal pig. Vet. Immunol. Immunopathol., 54: 75-81.
]Search in Google Scholar
[
Trevisan G., Jablonski E., Angulo J., Lopez W. A., Linhares D. C. L. (2019). Use of processing fluid samples for longitudinal monitoring of PRRS virus in herds undergoing virus elimination. Porcine Health Manag., 1;5:18.
]Search in Google Scholar
[
Tuboly S., Bernáth S., Glávits R., Kovács A., Megyeri Z. (1995). Intestinal absorption of colostral lymphocytes in newborn lambs and their role in the development of immune status. Acta Vet. Hung., 43: 105-115.
]Search in Google Scholar
[
Turlewicz-Podbielska H., Włodarek J., Pomorska-Mól M. (2020). Noninvasive strategies for surveillance of swine viral diseases: a review. J Vet Diagn Invest. 32: 503-512.
]Search in Google Scholar
[
Wagstrom E.A., Yoon K.J., Zimmerman J.J. (2000). Immune components in porcine mammary secretions. Viral Immunol., 13: 383-397.
]Search in Google Scholar
[
Ward L.A., Rich E.D., Besser T.E. (1996). Role of maternally derived circulating antibodies in protection of neonatal swine against porcine group A rotavirus. J. Infect. Dis., 174: 276–282.
]Search in Google Scholar
[
Williams P.P. (1993). Immunomodulating effects of intestinal absorbed maternal colostral leukocytes by neonatal pigs. Can. J. Vet. Res., 57: 1-8.
]Search in Google Scholar
[
Yang W.C., Schultz R.D. (1986). Ontogeny of natural killer cell activity and antibody-dependent cell mediated cytotoxicity in pigs. Dev. Comp. Immunol., 10: 405-418.
]Search in Google Scholar