1. bookVolume 23 (2023): Edition 2 (April 2023)
Détails du magazine
Première parution
25 Nov 2011
4 fois par an
Accès libre

Pineapple waste in animal feed: A review of nutritional potential, impact and prospects

Détails du magazine
Première parution
25 Nov 2011
4 fois par an

Abbas S., Shanbhag T., Kothare A. (2021). Applications of bromelain from pineapple waste towards acne. Saudi J. Biol. Sci., 28: 1001−1009. Search in Google Scholar

Aboh A., Zoffoun G., Djenontin A., Babatounde S., Mensah G. (2013). Effect of graded levels of dry pineapple peel on digestibility and growth performance of rabbit. J. Appl. Biosci., 67: 52711−5276. Search in Google Scholar

Acar Ü., Karabayır A., Kesbiç O., Yılmaz S., Zemheri F. (2018). Effects on some immunological parameters and gene expression levels of lupin meal (Lupinus albus) replaced with fish meal in rainbow trout (Oncorhynchus mykiss). COMUJAF, 6: 811−89. Search in Google Scholar

Adekanbi A., Onwuka C., Oni A., Ojo V., Ajayi F., Popoola M. (2017). Performance evaluation and haematological biochemical parameters of West African dwarf goats fed pineapple waste (Ananas comosus) with or without yeast (Saccharomyces cerevisiae) supplementation. Nigerian J. Anim. Prod., 44: 3421−353. Search in Google Scholar

Adeyemi O., Ajado A., Okubanjo A., Eniolorunda O. (2011). Response of growing rabbits to graded levels of fermented and unfermented pineapple peel. Nigeria J. Anim. Prod., 38: 861−898. Search in Google Scholar

Ahmed O.H., Husni M., Anuar A., Hanafi M. (2004). Towards sustainable use of potassium in pineapple waste. Sci. World J., 4: 10071−1013. Search in Google Scholar

Ajayi A.M., Coker A.I., Oyebanjo O.T., Adebanjo I.M., Ademowo O.G. (2022). Ananas comosus (L) Merrill (pineapple) fruit peel extract demonstrates antimalarial, anti-nociceptive and anti-inflammatory activities in experimental models. J. Ethnopharmac., 282: 114576. Search in Google Scholar

Ali M.M., Hashim N., Abd Aziz S., Lasekan O. (2020). Pineapple (Ananas comosus): A comprehensive review of nutritional values, volatile compounds, health benefits, and potential food products. Food Res. Int., 137: 109675. Search in Google Scholar

Asaolu V.O., Binuomote R.T., Oyelami O.S. (2016). Assessment of feeding value of vegetable-carried pineapple fruit wastes to Red Sokoto goats in Ogbomoso, Oyo State of Nigeria. Afr. J. Biotechnol., 15: 1648−1660. Search in Google Scholar

Asim M., Abdan K., Jawaid M., Nasir M., Dashtizadeh Z., Ishak M., Hoque M.E. (2015). A review on pineapple leaves fibre and its composites. Int. J. Polym. Sci., 950567. Search in Google Scholar

Assumi S., Jha S., Kaur C. (2018). Valorization of pineapple waste for development of animal feed block. Int. J. Curr. Microbiol. Appl. Sci., 7: 3787−3795. Search in Google Scholar

Astuti W., Sulistyaningsih T., Kusumastuti E., Thomas G.Y.R.S., Kusnadi R.Y. (2019). Thermal conversion of pineapple crown leaf waste to magnetized activated carbon for dye removal. Bioresour. Technol., 287: 121426. Search in Google Scholar

Ayandiran S.K., Odeyinka S.M., Oyebanji B.O. (2019). Hematological and biochemical parameters of West African Dwarf (WAD) goats fed wheat offal-carried pineapple waste (WCPW). Int. J. Animal Sci., 3: 1046s. Search in Google Scholar

Azizan A., Lee A.X., Abdul Hamid N.A., Maulidiani M., Mediani A., Abdul Ghafar S.Z., Zolkeflee N.K.Z., Abas F. (2020). Potentially bioactive metabolites from pineapple waste extracts and their antioxidant and α-glucosidase inhibitory activities by 1H NMR. Foods., 9: 173 Search in Google Scholar

Baidh E., Kigozi J., Mukisa I., Muyanja C., Namubiru L., Kitarikawe B. (2021). Unearthing the potential of solid waste generated along the pineapple drying process line in Uganda: a review. Environ. Challenges, 2: 100012. Search in Google Scholar

Batista S., Medina A., Pires M., Moriñigo M., Sansuwan K., Fernandes J., Valente L., Ozório R. (2016). Innate immune response, intestinal morphology and microbiota changes in Senegalese sole fed plant protein diets with probiotics or autolysed yeast. Appl. Microbiol. Biotechnol., 100: 7223−7238. Search in Google Scholar

Buliah N., Jamek S., Ajit A., Abu R. (2019). Production of dairy cow pellets from pineapple leaf waste. AIP Conference Proceedings, 2124: 020048. Search in Google Scholar

Chaudhary V., Kumar V., Vaishali S., Sing K., Kumar R., Kumar V. (2019). Pineapple (Ananas comosus) product processing: A review. J. Pharmacog. Phytochem., 8: 4642−4652. Search in Google Scholar

Choi Y., Lee S., Na Y. (2021). Effects of a pineapple (Ananas comosus L.) cannery by-product on growth performance and carcass characteristics in finishing Hanwoo steers. Anim. Biosci., 34: 233. Search in Google Scholar

Chu P.H., Jenol M.A., Phang L.Y., Ibrahim M.F., Prasongsuk S., Bankeeree W., Punnapayak H., Lotrakul P., Abd-Aziz S. (2021). Starch extracted from pineapple (Ananas comosus) plant stem as a source for amino acids production. Chem. Biol. Technol. Agric., 8: 1−15. Search in Google Scholar

Chu Y.T., Lo C.T., Chang S.C., Lee T.T. (2017). Effects of Trichoderma fermented wheat bran on growth performance, intestinal morphology and histological findings in broiler chickens. Ital. J. Anim. Sci., 16: 82−92. Search in Google Scholar

Cordeiro C.D.C., Fernandes A.M., Oliveira T.S.D., Camilo M.G., Baffa D.F., Glória L.S., Bernardo S.E.E. (2022). Intake, total apparent digestibility, and microbial efficiency of sheep fed pineapple waste silage in different planes of nutrition. Rev. Bras. de. Zootec., 51. Search in Google Scholar

Correia R., Magalhaes M., Macêdo G. (2007). Protein enrichment of pineapple waste with Saccharomyces cerevisiae by solid state bioprocessing. J. Sci. Ind. Res., 66: 259−262. Search in Google Scholar

Costa R., Correia M., Da Silva J., De Medeiros A., De Carvalho F. (2007). Effect of different levels of dehydrated pineapple by-products on intake, digestibility and performance of growing goats. Small Rumin. Res., 71: 138−143. Search in Google Scholar

Daramola J., Adeloye A., Fatoba T., Soladoye A. (2005). Haematological and biochemical parameters of West African Dwarf goats. Livest. Res. Rural. Dev., 17: 95. Search in Google Scholar

Das G., Patra J.K., Debnath T., Ansari A., Shin H.S. (2019). Investigation of antioxidant, antibacterial, antidiabetic, and cytotoxicity potential of silver nanoparticles synthesized using the outer peel extract of Ananas comosus (L.). PLoS One., 14: e0220950. Search in Google Scholar

Das U., Bhattacharyya R., Sen D., Bhattacharjee P., Choudhury P. (2021). Organic pineapple production technology in Tripura − The lone AEZ for fruits in North East India. Int. J. Agric. Environ. Biotechnol., 14: 149−158. Search in Google Scholar

Dawood M.A.O., Habotta O.A.E., Elsabagh M., Azra M.N., Van Doan H., Kari Z.A., Sewilam H. (2022). Fruit processing by-products in the aquafeed industry: A feasible strategy for aquaculture sustainability. Rev. Aquac., 14: 1945−1965. Search in Google Scholar

De Ancos B., Sánchez-Moreno C., González-Aguilar G.A. (2016). Pineapple composition and nutrition. Handbook of Pineapple Technology: Production, Postharvest Science, Processing and Nutrition, Lobo M.G., Paull R.E. (eds). pp. 221−239. Search in Google Scholar

Deka A., Sahu N., Jain K. (2003). Utilization of fruit processing wastes in the diet of Labeo rohita fingerling. Asian Australas J. Anim. Sci., 16: 1661−1665. Search in Google Scholar

Dolhaji N.H., Muhamad I.I., Ya’akub H., Abd Aziz A. (2018). Evaluation of chilling injury and internal browning condition on quality attributes, phenolic content, and antioxidant capacity during suboptimal cold storage of Malaysian cultivar pineapples. Malays. J. Fund. Appl. Sci., 14: 456−461. Search in Google Scholar

Egwim E.C. (2014). Production of animal feed concentrates from sour sop and pineapple peels using solid state fermentation. J. Biol. Agri. Healthcare., 4: 22−29. Search in Google Scholar

Feng J., Liu X., Xu Z., Liu Y., Lu Y. (2007). Effects of Aspergillus oryzae 3.042 fermented soybean meal on growth performance and plasma biochemical parameters in broilers. Anim. Feed Sci. Technol., 134: 23−242. Search in Google Scholar

Ferreira A.C.H., Rodriguez N.M., Neiva J.N.M., Pimentel P.G., Gomes S.P., Campos W.E., Lopes F.C.F., Mizubuti I.Y., Moreira G.R. (2016). In situ degradability of elephant grass ensiled with increasing levels of pineapple agro-industrial byproduct. Semina: Ciências Agrárias., 37: 2807−2818. Search in Google Scholar

Gao Y., Storebakken T., Shearer K.D., Penn M., Øverland M. (2011). Supplementation of fishmeal and plant protein-based diets for rainbow trout with a mixture of sodium formate and butyrate. Aquaculture, 311: 233−240. Search in Google Scholar

Geoffroy F. (1985). Fruits and fruit by-products as cereal substitutes in animal feeding. Proc. FAO Expert Consultation on the Substitution of Imported Concentrate Feeds in Animal Production Systems in Developing Countries. Search in Google Scholar

Gil L.S., Maupoey P.F. (2018). An integrated approach for pineapple waste valorisation. Bioethanol production and bromelain extraction from pineapple residues. J. Clean. Prod., 172: 1224−1231. Search in Google Scholar

Glencross B.D., Booth M., Allan G.L. (2007). A feed is only as good as its ingredients – a review of ingredient evaluation strategies for aquaculture feeds. Aquac. Nutr., 13: 17−34. Search in Google Scholar

Gómez-García R., Campos D.A., Aguilar C.N., Madureira A.R., Pintado M. (2021). Valorisation of food agro-industrial by-products: From the past to the present and perspectives. J. Environ. Manage., 299: 113571. Search in Google Scholar

Gowda N.K.S., Vallesha N.C., Awachat V.B., Anandan S., Pal D.T., Prasad C.S. (2015). Study on evaluation of silage from pineapple (Ananas comosus) fruit residue as livestock feed. Trop. Anim. Health Prod., 47: 557−561. Search in Google Scholar

Gupta A., Patra R., Saini M., Swarup D. (2007). Haematology and serum biochemistry of chital (Axis axis) and barking deer (Muntiacus muntjak) reared in semi-captivity. Vet. Res. Commun., 31: 801−808. Search in Google Scholar

Guthrie M., Wagner D. (1988). Influence of protein or grain supplementation and increasing levels of soybean meal on intake, utilization and passage rate of prairie hay in beef steers and heifers. J. Anim. Sci., 66: 1529−1537. Search in Google Scholar

Habotta O.A., Dawood M.A., Kari Z.A., Tapingkae W., Van Doan H. (2022). Antioxidative and immunostimulant potential of fruit derived biomolecules in aquaculture. Fish Shellfish Immunol., 130: 317−322. Search in Google Scholar

Han J., Du J., Zhang J., Lian W., Li M. (2015). How the pineapple leaf residue silage influence the finishing pigs’ growing performance and biochemical parameters of the blood. Proc. 6th International Conference on Manufacturing Science and Engineering. Atlantis Press, pp. 1929−1934. Search in Google Scholar

Hattakum C., Kanjanapruthipong J., Nakthong S., Wongchawalit J., Piamya P., Sawanon S. (2019). Pineapple stem by-product as a feed source for growth performance, ruminal fermentation, carcass and meat quality of Holstein steers. S. Afr. J. Anim. Sci., 49: 147−155. Search in Google Scholar

Hemalatha R., Anbuselvi S. (2013). Physicohemical constituents of pineapple pulp and waste. J. Chem. Pharm. Res., 5: 240−242. Search in Google Scholar

Hikal W.M., Mahmoud A.A., Said-Al Ahl H.A., Bratovcic A., Tkachenko K.G., Kačániová M., Rodriguez R.M. (2021). Pineapple (Ananas comosus L. Merr.), waste streams, characterisation and valorisation: An overview. Open J. Ecol., 11: 610−634. Search in Google Scholar

Hoseinifar S.H., Jahazi M.A., Nikdehghan N., Van Doan H., Volpe M.G., Paolucci M. (2020). Effects of dietary polyphenols from agricultural by-products on mucosal and humoral immune and antioxidant responses of convict cichlid (Amatitlania nigrofasciata). Aquaculture, 517: 734790. Search in Google Scholar

Hossain M.F., Akhtar S., Anwar M. (2015). Nutritional value and medicinal benefits of pineapple. Int. J. Nutr. Food Sci., 4: 84−88. Search in Google Scholar

Huang Y.-L., Tsai Y.-H., Chow C.-J. (2014). Water-insoluble fiberrich fraction from pineapple peel improves intestinal function in hamsters: evidence from cecal and fecal indicators. Nutr. Res., 34: 346−354. Search in Google Scholar

Jetana T., Suthikrai W., Usawang S., Vongpipatana C., Sophon S., Liang J. (2009). The effects of concentrate added to pineapple (Ananas comosus Linn. Mer.) waste silage in differing ratios to form complete diets, on digestion, excretion of urinary purine derivatives and blood metabolites in growing, male, Thai swamp buffaloes. Trop. Anim. Health Prod., 41: 449−459. Search in Google Scholar

Kari Z.A., Kabir M.A., Razab M.K.A.A., Munir M.B., Lim P.T., Wei L.S. (2020). A replacement of plant protein sources as an alternative of fish meal ingredient for African catfish, Clarias gariepinus: A review. J. Trop. Resour. Sustain. Sci., 8: 47−59. Search in Google Scholar

Kari Z.A., Kabir M.A., Mat K., Rusli N.D., Razab M.K.A.A., Ariff N.S.N.A., Edinur H.A., Rahim M.Z.A., Pati S., Dawood M.A. (2021). The possibility of replacing fish meal with fermented soy pulp on the growth performance, blood biochemistry, liver, and intestinal morphology of African catfish (Clarias gariepinus). Aquac. Rep., 21: 100815. Search in Google Scholar

Kari Z.A., Kabir M.A., Dawood M.A., Razab M.K.A.A., Ariff N.S.N.A., Sarkar T., Pati S., Edinur H.A., Mat K., Ismail T.A. (2022). Effect of fish meal substitution with fermented soy pulp on growth performance, digestive enzyme, amino acid profile, and immune-related gene expression of African catfish (Clarias gariepinus). Aquaculture, 546: 737418. Search in Google Scholar

Khongpradit A., Boonsaen P., Homwong N., Suzuki Y., Koike S., Sawanon S., Kobayashi Y. (2020). Effect of pineapple stem starch feeding on rumen microbial fermentation, blood lipid profile, and growth performance of fattening cattle. Anim. Sci. J., 91: e13459. Search in Google Scholar

Kumar A. (2021). Utilization of bioactive components present in pineapple waste: A review. J. Pharma Innov., 10: 954−961. Search in Google Scholar

Kyawt Y.Y., San Win K., San Mu K., Aung A., Aung M. (2020). Feeding pineapple waste silage as roughage source improved the nutrient intakes, energy status and growth performances of growing Myanmar local cattle. J. Adv. Vet. Anim. Res., 7: 436. Search in Google Scholar

Lasekan O., Hussein F.K. (2018). Classification of different pineapple varieties grown in Malaysia based on volatile fingerprinting and sensory analysis. Chem. Cent. J., 12: 1−12. Search in Google Scholar

Lima M.R.D., Ludke M.D.C.M.M., Holanda M.C.R.D., Pinto B.W.C., Ludke J.V., Santos E.L. (2012). Performance and digestibility of Nile tilapia fed with pineapple residue bran. Acta Scient. Anim. Sci. J., 34: 41−47. Search in Google Scholar

Liu C., Asano S., Ogata H., Ito S., Nakase T., Takeda S., Miyoshi K., Numata Y., Takahashi K., Kajikawa H. (2021). Digestive, fermentative, and physical properties of pineapple residue as a feed for cattle. Anim. Sci. J., 92: e13535. Search in Google Scholar

Lubaina A., Renjith P., Kumar P. (2019). Antibacterial potential of different extracts of pineapple peel against gram-positive and gramnegative bacterial strains. Asian J. Pharm. Pharmacol., 5: 66−70. Search in Google Scholar

Makinde O., Odeyinka S., Ayandiran S. (2011). Simple and quick method for recycling pineapple waste into animal feed. Livest. Res. Rural Dev., 23: 188. Search in Google Scholar

Mandey J., Tulung B., Leke J., Sondakh B. (2018). Performance and carcass quality of broiler chickens fed diet containing pineapple waste meal fermented by “ragi tape”. IOP Conference Series: Earth and Environmental Science, 102: 012042. Search in Google Scholar

Maneerat W., Prasanpanich S., Tumwasorn S., Laudadio V., Tufarelli V. (2015). Evaluating agro-industrial by-products as dietary roughage source on growth performance of fattening steers. Saudi J. Biol. Sci., 22: 580−584. Search in Google Scholar

Mat K., Abdul Kari Z., Rusli N.D., Che Harun H., Wei L.S., Rahman M.M., Mohd Khalid H.N., Mohd Ali Hanafiah M.H., Mohamad Sukri S.A., Raja Khalif R.I.A. (2022). Coconut palm: Food, feed, and nutraceutical properties. Animals, 12: 2107. Search in Google Scholar

Maurer H. (2001). Bromelain: biochemistry, pharmacology and medical use. Cell. Mol. Life Sci., 58: 1234−1245. Mello B.L., Fernandes A.M., de Oliveira T.S., Leonel F.P., Glória L.S., Silva R.S. (2021). Feed intake, digestibility, and energy contents in growing bull fed pineapple crop waste silage in different planes of nutrition. Trop. Anim. Health Prod., 53: 1−10. Search in Google Scholar

Mensah J.K., Twumasi P. (2017). Use of pineapple waste for single cell protein (SCP) production and the effect of substrate concentration on the yield. J. Food Process Eng., 40: e12478. Search in Google Scholar

Mitchaothai J., Lukkananukool A., Polyorach S., Chaosap C., Sitthigripong R. (2019). Villous morphology of small intestine of Charolais crossbred beef cattle raised by pineapple co-product diet. Khon Kaen Agric. J., 47: 1041−1046. Search in Google Scholar

Molinari G.S., McCracken V.J., Wojno M., Rimoldi S., Terova G., Kwasek K. (2020). Can intestinal absorption of dietary protein be improved through early exposure to plant-based diet? PLoS One, 15: e0228758. Search in Google Scholar

Moloney A.P., McGee M. (2017). Factors influencing the growth of meat animals. In: Lawrie’s Meat Science. Elsevier, pp. 19−47. Search in Google Scholar

Müller Z. (1978). Feeding potential of pineapple waste for (beef) cattle. World Anim. Rev., 25: 25−29. Search in Google Scholar

Oduguwa B., Sanusi G., Fasae O., Oni O. (2013). Nutritive value, growth performance and haematological parameters of West African dwarf sheep fed preserved pineapple fruit waste and cassava by-products. Niger. J. Anim. Prod., 40: 123−132. Search in Google Scholar

Omole A., Ajasin F., Adejuyigbe A., Soetan A. (2011). Effects of feeding snails with pineapple waste on feed consumption, growth and cost benefits. Arch. Zootec., 60: 53−56. Search in Google Scholar

Omwango E.O., Njagi E.N.M., Orinda G.O., Wanjau R.N. (2013). Nutrient enrichment of pineapple waste using Aspergillus niger and Trichoderma viride by solid state fermentation. Afr. J. Biotechnol., 12: 6193−6196. Search in Google Scholar

Owens F.N., Gill D.R., Secrist D.S., Coleman S. (1995). Review of some aspects of growth and development of feedlot cattle. J. Anim. Sci., 73: 3152−3172. Search in Google Scholar

Pavan R., Jain S., Kumar A. (2012). Properties and therapeutic application of bromelain: a review. Biotechnol. Res. Int., 2012. Pimpimol T., Thiammueang D., Karnchanamayoon K., Kanjanamayoon K., Tongsiri S. (2020). Effect of pineapple juice and dried papaya peel in the diet on growth performances of channel catfish (Ictalurus punctatus). Maejo Int. J. Energ. Environ. Comm., 2: 29−34. Search in Google Scholar

Pino J.A. (2013). Odour-active compounds in pineapple (Ananas comosus [L.] Merril cv. Red Spanish). Int. J. Food Sci. Technol., 48: 564−570. Search in Google Scholar

Pintadis S., Boonsaen P., Hattakum C., Homwong N., Sawanon S. (2020). Effects of concentrate levels and pineapple stem on growth performance, carcass and meat quality of dairy steers. Trop. Anim. Health Prod., 52: 1911−1917. Search in Google Scholar

Prado K.S., Spinacé M.A. (2019). Isolation and characterization of cellulose nanocrystals from pineapple crown waste and their potential uses. Int. J. Biol. Macromol., 122: 410−416. Search in Google Scholar

Rahma A., Adriani M., Rahayu P., Tjandrawinata R.R., Rachmawati H. (2019). Green isolation and physical modification of pineapple stem waste starch as pharmaceutical excipient. Drug Dev. Ind. Pharm., 45: 1029−1037. Search in Google Scholar

Rahman M., Yang D.K. (2018). Effects of Ananas comosus leaf powder on broiler performance, haematology, biochemistry, and gut microbial population. R. Bras. Zootec., 47: e20170064. Search in Google Scholar

Rani D.S., Nand K. (2004). Ensilage of pineapple processing waste for methane generation. J. Waste Manag., 24: 523−528. Search in Google Scholar

Rashad M.M., Mahmoud AE., Ali M.M., Nooman M.U., Al-Kashef A.S. (2015). Antioxidant and anticancer agents produced from pineapple waste by solid state fermentation. Int. J. Toxicol. Pharmacol. Res., 7: 287−296. Search in Google Scholar

Ribeiro L., Moura J., Santos M., Colen R., Rodrigues V., Bandarra N., Soares F., Ramalho P., Barata M., Moura P. (2015). Effect of vegetable based diets on growth, intestinal morphology, activity of intestinal enzymes and haematological stress indicators in meagre (Argyrosomus regius). Aquaculture, 447: 116−128. Search in Google Scholar

Roda A., Lambri M. (2019). Food uses of pineapple waste and byproducts: a review. Int. J. Food Sci. Technol., 54: 1009−1017. Search in Google Scholar

Roda A., Lucini L., Torchio F., Dordoni R., De Faveri D.M., Lambri M. (2017). Metabolite profiling and volatiles of pineapple wine and vinegar obtained from pineapple waste. Food Chem., 229: 734−742. Search in Google Scholar

Rusli N., Ghani A., Mat K., Yusof M., Zamri-Saad M., Hassim H. (2021). The potential of pretreated oil palm frond in enhancing rumen degradability and growth performance: a review. Adv. Anim. Vet. Sci., 9: 811−822. Search in Google Scholar

Saka A., Adekunjo R., Ogunleke F., Ogunfolabo L., Adetola O., Awodele O., Lawrence-Azua O., Okuneye O. (2016). Performance characteristics and blood profile of West African dwarf goats fed diet containing graded level of malted sorghum sprout mixed with pineapple waste based diet. Niger. J. Anim. Sci., 18: 145−153. Search in Google Scholar

Sanchaisuriya P., Thammabut B. (1994). Effect of pineapple waste in growing-finishing pig diets. Kaen Kaset, 22:193−197. Search in Google Scholar

Santos-Silva J., Alves S.P., Francisco A., Portugal A.P., Almeida J., Fialho L., Jerónimo E., Bessa R.J. (2020). Effects of a high-fibre and low-starch diet in growth performance, carcass and meat quality of young Alentejana breed bulls. Meat Sci., 168: 108191. Search in Google Scholar

Saranraj P., Stella D. (2012). Vermicomposting and its importance in improvement of soil nutrients and agricultural crops. Novus Nat. Sci. Res., 1: 14−23. Search in Google Scholar

Shaibu M., Aremu A., Alabi O.J. (2020). Performance of broiler chicken fed sun-dried pineapple (Ananas comosus) and orange (Citrus sinensis) peels waste based diets under single phase feeding. Niger. Soc. Anim. Prod., 45: 1377−1381. Search in Google Scholar

Sharma S.A., Krishnakumar V., Arulraj J. (2019). Impact of Ananas comosus extract supplementation on the growth and biochemical profile of Cyprinus carpio fingerlings. Trends Fish Res., 8: 69−77. Search in Google Scholar

Shi Z., Li X.-Q., Chowdhury M.K., Chen J.-N., Leng X.-J. (2016). Effects of protease supplementation in low fish meal pelleted and extruded diets on growth, nutrient retention and digestibility of gibel carp, Carassius auratus gibelio. Aquaculture, 460: 37−44. Search in Google Scholar

Shiu Y.L., Wong S.L., Guei W.C., Shin Y.C., Liu C.H. (2015). Increase in the plant protein ratio in the diet of white shrimp, Litopenaeus vannamei (Boone), using Bacillus subtilis E20-fermented soybean meal as a replacement. Aquac. Res., 46: 382−394. Search in Google Scholar

Siti Rashima R., Maizura M., Wan Nur Hafzan W., Hazzeman H. (2019). Physicochemical properties and sensory acceptability of pineapples of different varieties and stages of maturity. Food Res., 5: 491−500. Search in Google Scholar

Snitwong C., Suwangumjai T., Intharachote U. (1985). Utilization of pineapple waste in complete ration for weaning cattle. Sattawaphaet San., 36: 357−366. Sruamsiri S. (2007). Agricultural wastes as dairy feed in Chiang Mai. Anim. Sci. J., 78: 335−341. Search in Google Scholar

Staub N.C. (1994). Pulmonary intravascular macrophages. Annu. Rev. Physiol., 56: 47−67. Search in Google Scholar

Sukri S.A.M., Andu Y., Harith Z.T., Sarijan S., Pauzi M.N.F., Wei L.S., Dawood M.A., Kari Z.A. (2022). Effect of feeding pineapple waste on growth performance, texture quality and flesh colour of nile tilapia (Oreochromis niloticus) fingerlings. Saudi J. Biol. Sci., 29: 2514−2519. Search in Google Scholar

Suksathit S., Wachirapakorn C., Opatpatanakit Y. (2011). Effects of levels of ensiled pineapple waste and pangola hay fed as roughage sources on feed intake, nutrient digestibility and ruminal fermentation of Southern Thai native cattle. Songklanakarin J. Sci. Technol., 33: 281−289. Search in Google Scholar

Tavano O.L. (2013). Protein hydrolysis using proteases: An important tool for food biotechnology. J. Mol. Catal. B Enzym., 90: 1−11. Search in Google Scholar

Tochi B.N., Wang Z., Xu S.-Y., Zhang W. (2008). Therapeutic application of pineapple protease (bromelain): a review. Pak. J. Nutr., 7: 513−520. Search in Google Scholar

Tuntivisoottikul K. (1984). Utilization of pineapple waste and coontail aquatic weed (Ceratophyllum demersum L.) in growing-finishing pigs diets. FAO. Search in Google Scholar

Upadhyay A., Lama J.P., Tawata S. (2010). Utilization of pineapple waste: a review. J. Food Sci. Technol. Nepal., 6: 10−18. Search in Google Scholar

Van Doan H., Hoseinifar S.H., Harikrishnan R., Khamlor T., Punyatong M., Tapingkae W., Yousefi M., Palma J., El-Haroun E. (2021). Impacts of pineapple peel powder on growth performance, innate immunity, disease resistance, and relative immune gene expression of Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol., 114: 311−319. Search in Google Scholar

Van Dyk J., Gama R., Morrison D., Swart S., Pletschke B. (2013). Food processing waste: Problems, current management and prospects for utilisation of the lignocellulose component through enzyme synergistic degradation. Renew. Sust. Energ. Rev., 26: 521−531. Search in Google Scholar

Vega-Castro O., Contreras-Calderon J., León E., Segura A., Arias M., Pérez L., Sobral P.J. (2016). Characterization of a polyhydroxyalkanoate obtained from pineapple peel waste using Ralsthonia eutropha. J. Biotechnol., 231: 232−238. Search in Google Scholar

Wang E., Wang J., Long B., Wang K., He Y., Yang Q., Chen D., Geng Y., Huang X., Ouyang P. (2016). Molecular cloning, expression and the adjuvant effects of interleukin-8 of channel catfish (Ictalurus punctatus) against Streptococcus iniae. Sci. Rep., 6: 1−12. Search in Google Scholar

Wei C.B., Ding X.D., Liu Y.G., Zhao W.F., Sun G.M. (2014). Application of solid-phase microextraction for the analysis of aroma compounds from pineapple fruit. Adv. Mater. Res., 988: 397−406. Search in Google Scholar

Wiszniewski G., Jarmołowicz S., Hassaan M.S., Mohammady E.Y., Soaudy M.R., Łuczyńska J., Tońska E., Terech-Majewska E., Ostaszewska T., Kamaszewski M. (2019). The use of bromelain as a feed additive in fish diets: Growth performance, intestinal morphology, digestive enzyme and immune response of juvenile sterlet (Acipenser ruthenus). Aquac. Nutr., 25: 1289−1299. Search in Google Scholar

Wittayakun S., Innaree S., Innaree W., Chainetr W. (2015). Supplement of sodium bicarbonate, calcium carbonate and rice straw in lactating dairy cows fed pineapple peel as main roughage. Slovak J. Anim. Sci., 48: 71−78. Search in Google Scholar

Wittayakun S., Innsree W., Inaree S., Chainetr W., Kongngoen N. (2019). Effect of protein to metabolizable energy ratio in pineapple waste silage-based diets on performance of holstein heifers. J. Anim. Health Prod., 7: 158−165. Search in Google Scholar

Yang X., He Y., Chi S., Tan B., Lin S., Dong X., Yang Q., Liu H., Zhang S. (2020). Supplementation with Saccharomyces cerevisiae hydrolysate in a complex plant protein, low-fishmeal diet improves intestinal morphology, immune function and Vibrio harveyi disease resistance in Epinephelus coioides. Aquaculture, 529: 735655. Search in Google Scholar

Yuangsoi B., Klahan R., Charoenwattanasak S., Lin S.M. (2018). Effects of supplementation of pineapple waste extract in diet of Nile tilapia (Oreochromis niloticus) on growth, feed utilization, and nitrogen excretion. J. Appl. Aquac., 30: 227−237. Search in Google Scholar

Zulhisyam A.K., Kabir M.A., Munir M.B., Wei L.S. (2020). Using of fermented soy pulp as an edible coating material on fish feed pellet in African catfish (Clarias gariepinus) production. AACL Bioflux, 13: 296−308. Search in Google Scholar

Articles recommandés par Trend MD