[Accili D., Arden K.C. (2004). FoxOs at the crossroads of cellular review metabolism, differentiation, and transformation. Cell, 117: 421–426.]Search in Google Scholar
[Andreote A.P.D., Rosario M.F., Ledur M.C., Jorge E.C., Sonstegard T.S., Matukumalli L., Coutinho L.L. (2014). Identification and characterization of microRNAs expressed in chicken skeletal muscle. Genet. Mol. Res., 13: 1465–1479; https://doi.org/10.4238/2014.March.6.5.10.4238/2014..6.5]Ouvrir le DOISearch in Google Scholar
[Baquero-Perez B., Kuchipudi S.V., Nelli R.K., Chang K.C. (2012). A simplified but robust method for the isolation of avian and mammalian muscle satellite cells. BMC Cell Biol. 13, 16; https://doi.org/10.1186/1471-2121-13-16.10.1186/1471-2121-13-16343259722720831]Ouvrir le DOISearch in Google Scholar
[Bassel-Duby R., Olson E.N. (2006). Signaling pathways in skeletal muscle remodeling. Annu. Rev. Biochem.,75: 19–37; https://doi.org/10.1146/annurev.biochem.75.103004.142622.10.1146/annurev.biochem.75.103004.14262216756483]Ouvrir le DOISearch in Google Scholar
[Berkes C.A., Tapscott S.J. (2005). MyoD and the transcriptional control of myogenesis. Semin. Cell Dev. Biol., 16: 585–595; https://doi.org/10.1016/j.semcdb.2005.07.006.10.1016/j.semcdb.2005.07.00616099183]Ouvrir le DOISearch in Google Scholar
[Bodine S.C., Stitt T.N., Gonzalez M., Kline W.O., Stover G.L., Bauerlein R., Zlotchenko E., Scrimgeour A., Lawrence J.C., Glass D.J., Yancopoulos G.D. (2001). Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat. Cell Biol., 3: 1014–1019; https://doi.org/10.1038/ncb1101-1014.10.1038/ncb1101-101411715023]Ouvrir le DOISearch in Google Scholar
[Boutz P.L., Chawla G., Stoilov P., Black D.L. (2007). MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev., 21: 71–84; https://doi.org/10.1101/gad.1500707.10.1101/gad.1500707175990217210790]Ouvrir le DOISearch in Google Scholar
[Braun T., Gautel M. (2011). Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nat. Rev. Mol. Cell Biol., 12: 349–361; https://doi.org/10.1038/nrm3118.10.1038/nrm311821602905]Ouvrir le DOISearch in Google Scholar
[Buckingham M. (2006). Myogenic progenitor cells and skeletal myogenesis in vertebrates. Curr. Opin. Genet. Dev.; https://doi.org/10.1016/j.gde.2006.08.008.10.1016/j.gde.2006.08.00816930987]Ouvrir le DOISearch in Google Scholar
[Buechner J., Tømte E., Haug B.H., Henriksen J.R., Løkke C., Flægstad T., Einvik C. (2011). Tumour-suppressor microRNAs let-7 and mir-101 target the proto-oncogene MYCN and inhibit cell proliferation in MYCN-amplified neuroblastoma. Br. J. Cancer, 105: 296–303; https://doi.org/10.1038/bjc.2011.220.10.1038/bjc.2011.220314280321654684]Ouvrir le DOISearch in Google Scholar
[Burattini S., Ferri R., Battistelli M., Curci R., Luchetti F., Falcieri E. (2004). C2C12 murine myoblasts as a model of skeletal muscle development: Morpho-functional characterization. Eur. J. Histochem., 48: 223–233.]Search in Google Scholar
[Cardinalli B., Castellani L., Fasanaro P., Basso A., Alemà S., Martelli F., Falcone G. (2009). Microrna-221 and microrna-222 modulate differentiation and maturation of skeletal muscle cells. PLoS One, 4; https://doi.org/10.1371/journal.pone.0007607.10.1371/journal.pone.0007607276261419859555]Search in Google Scholar
[Castigliego L., Armani A., Grifoni G., Rosati R., Mazzi M., Gianfaldoni D., Guidi A. (2010). Effects of growth hormone treatment on the expression of somatotropic axis genes in the skeletal muscle of lactating Holstein cows. Domest. Anim. Endocrinol., 39: 40–53; https://doi.org/10.1016/j.domaniend.2010.02.00110.1016/j.domaniend.2010.02.00120399067]Ouvrir le DOISearch in Google Scholar
[Chen B., Xu J., He X., Xu H., Li G., Du H., Nie Q., Zhang X. (2015). A genome-wide mRNA screen and functional analysis reveal FOXO3 as a candidate gene for chicken growth. PLoS One, 10: 1–22; https://doi.org/10.1371/journal.pone.0137087.10.1371/journal.pone.0137087456932826366565]Ouvrir le DOISearch in Google Scholar
[Chen J.F., Mandel E.M., Thomson J.M., Wu Q., Callis T.E., Hammond S.M., Conlon F.L., Wang D.Z. (2006). The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet., 38: 228–233; https://doi.org/10.1038/ng1725.10.1038/ng1725253857616380711]Ouvrir le DOISearch in Google Scholar
[Chen J.F., Tao Y., Li J., Deng Z., Yan Z., Xiao X., Wang D.Z. (2010) microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J. Cell Biol., 190: 867–879; https://doi.org/10.1083/jcb.200911036.10.1083/jcb.200911036293556520819939]Ouvrir le DOISearch in Google Scholar
[Chen L., Li Y.S., Cui J., Ning J.N., Wang G.S., Qian G.S., Lu K.Z., Yi B. (2014). MiR-206 controls the phenotypic modulation of pulmonary arterial smooth muscle cells induced by serum from rats with Hepatopulmonary syndrome by regulating the target gene, Annexin A2. Cell. Physiol. Biochem., 34: 1768–1779; https://doi.org/10.1159/000366377.10.1159/00036637725427750]Ouvrir le DOISearch in Google Scholar
[Chung F.W., Tellam R.L. (2008). MicroRNA-26a targets the histone methyltransferase enhancer of zeste homolog 2 during myogenesis. J. Biol. Chem., 283: 9836–9843; https://doi.org/10.1074/jbc.M709614200.10.1074/jbc.709614200]Ouvrir le DOISearch in Google Scholar
[Clop A., Marcq F., Takeda H., Pirottin D., Tordoir X., Bibé B., Bouix J., Caiment F., Elsen J.M., Eychenne F., Larzul C., Laville E., Meish F., Milenkovic D., Tobin J., Charlier C., Georges M. (2006). A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat. Genet., 38: 813–818; https://doi.org/10.1038/ng1810.10.1038/ng181016751773]Ouvrir le DOISearch in Google Scholar
[Crippa S., Cassano M., Messina G., Galli D., Galvez B.G., Curk T., Altomare C., Ronzoni F., Toelen J., Gijsbers R., Debyser Z., Janssens S., Zupan B., Zaza A., Cossu G., Sampaolesi M. (2011). miR669a and miR669q prevent skeletal muscle differentiation in postnatal cardiac progenitors. J. Cell Biol., 193: 1197–1212; https://doi.org/10.1083/jcb.201011099.10.1083/jcb.201011099321634021708977]Ouvrir le DOISearch in Google Scholar
[Crist C.G., Montarras D., Pallafacchina G., Rocancourt D., Cumano A., Conway S.J., Buckingham M. (2009). Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression. Proc. Natl. Acad. Sci., 106: 13383–13387; https://doi.org/10.1073/pnas.0900210106.10.1073/pnas.0900210106272638119666532]Ouvrir le DOISearch in Google Scholar
[Cui T.X., Schwartz J., Piwien-Pilipuk G., Lanning N., Rathore M., LaPensee C.R., Calinescu A.-A., Lin G., Jin H., Qin Z.S., Carter-Su C., Streeter C. (2011). C/EBPβ mediates growth hormone-regulated expression of multiple target genes. Mol. Endocrinol., 25: 681–693; https://doi.org/10.1210/me.2010-0232.10.1210/me.2010-0232306308621292824]Ouvrir le DOISearch in Google Scholar
[Cutting A.D., Bannister S.C., Doran T.J., Sinclair A.H., Tizard M.V.L., Smith C.A. (2012). The potential role of microRNAs in regulating gonadal sex differentiation in the chicken embryo. Chromosom. Res., 20: 201–213; https://doi.org/10.1007/s10577-011-9263-y.10.1007/s10577-011-9263-y22161018]Ouvrir le DOISearch in Google Scholar
[Darnell D.K., Kaur S., Stanislaw S., Konieczka J.K., Yatskievych T.A., Antin P.B. (2006). MicroRNA expression during chick embryo development. Dev. Dyn., 235: 3156–3165; https://doi.org/10.1002/dvdy.20956.10.1002/dvdy.2095617013880]Ouvrir le DOISearch in Google Scholar
[De Mario A., Quintana-Cabrera R., Martinvalet D., Giacomello M. (2017). (Neuro)degenerated Mitochondria-ER contacts. Biochem. Biophys. Res. Commun., 483: 1096–1109; https://doi.org/10.1016/j.bbrc.2016.07.056.10.1016/j.bbrc.2016.07.05627416756]Ouvrir le DOISearch in Google Scholar
[Dey B.K., Gagan J., Yan Z., Dutta A. (2012). miR-26a is required for skeletal muscle differentiation and regeneration in mice. Genes Dev., 26: 2180–2191; https://doi.org/10.1101/gad.198085.112.10.1101/gad.198085.112346573923028144]Ouvrir le DOISearch in Google Scholar
[Draeger A., Babiychuk E.B., Schaller J., Palstra R.-J.T.S., Kämpfer U. (2002). Annexin VI participates in the formation of a reversible, membrane-cytoskeleton complex in smooth muscle cells. J. Biol. Chem., 274: 35191–3519; https://doi.org/10.1074/jbc.274.49.35191.10.1074/jbc.274.49.3519110575003]Search in Google Scholar
[Dupont J., Holzenberger M. (2003). Biology of insulin-like growth factors in development. Birth Defects Res. Part C: Embryo Today: Rev.; https://doi.org/10.1002/bdrc.10022.10.1002/bdrc.1002214745968]Ouvrir le DOISearch in Google Scholar
[Egerman M.A., Glass D.J. (2014). Signaling pathways controlling skeletal muscle mass. Crit. Rev. Biochem. Mol. Biol., 49: 59–68; https://doi.org/10.3109/10409238.2013.857291.10.3109/10409238.2013.857291391308324237131]Ouvrir le DOISearch in Google Scholar
[Elia L., Contu R., Quintavalle M., Varrone F., Chimenti C., Russo M.A., Cimino V., De Marinis L., Frustaci A., Catalucci D., Condorelli G. (2009). Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation, 120: 2377–2385; https://doi.org/10.1161/CIRCULATIONAHA.109.879429.10.1161/CIRCULATIONAHA.109.879429282565619933931]Ouvrir le DOISearch in Google Scholar
[Eun J.L., Baek M., Gusev Y., Brackett D.J., Nuovo G.J., Schmittgen T.D. (2008). Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors. RNA, 14: 35–42; https://doi.org/10.1261/rna.804508.10.1261/rna.804508215102718025253]Ouvrir le DOISearch in Google Scholar
[Feng Y., Cao J.H., Li X.Y., Zhao S.H. (2011). Inhibition of miR-214 expression represses proliferation and differentiation of C2C12 myoblasts. Cell Biochem. Funct., 29: 378–383; https://doi.org/10.1002/cbf.1760.10.1002/cbf.176021520152]Ouvrir le DOISearch in Google Scholar
[Feng Y., Niu L.L., Wei W., Zhang W.Y., Li X.Y., Cao J.H., Zhao S.H. (2013). A feedback circuit between miR-133 and the ERK1/2 pathway involving an exquisite mechanism for regulating myoblast proliferation and differentiation. Cell Death Dis., 4: 934; https://doi.org/10.1038/cddis.2013.462.10.1038/cddis.2013.462384733824287695]Ouvrir le DOISearch in Google Scholar
[Flynt A.S., Li N., Thatcher E.J., Solnica-Krezel L., Patton J.G. (2007). Zebrafish miR-214 modulates Hedgehog signaling to specify muscle cell fate. Nat. Genet., 39: 259–263; https://doi.org/10.1038/ng1953.10.1038/ng1953398279917220889]Ouvrir le DOISearch in Google Scholar
[Gan W., He H., Li L. (2016). Molecular cloning, characterisation and functional analysis of the duck Forkhead box O3 (FOXO3) gene. Br. Poult. Sci., 57: 143–150; https://doi.org/10.1080/00071668.2015.113550.10.1080/00071668.2015.113550]Ouvrir le DOISearch in Google Scholar
[Ge Y., Sun Y., Chen J. (2011). IGF-II is regulated by microRNA-125b in skeletal myogenesis. J. Cell Biol., 192: 69–81; https://doi.org/10.1083/jcb.201007165.10.1083/jcb.201007165301954721200031]Ouvrir le DOISearch in Google Scholar
[Glazov E.A., Cottee P.A., Barris W.C., Moore R.J., Dalrymple B.P., Tizard M.L. (2008). A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. Genome Res., 18: 957–964; https://doi.org/10.1101/gr.074740.107.10.1101/gr.074740.107241316318469162]Ouvrir le DOISearch in Google Scholar
[Goettsch C., Rauner M., Pacyna N., Hempel U., Bornstein S.R., Hofbauer L.C. (2011). MiR-125b regulates calcification of vascular smooth muscle cells. Am. J. Pathol., 179: 1594–1600; https://doi.org/10.1016/j.ajpath.2011.06.016.10.1016/j.ajpath.2011.06.016318138321806957]Ouvrir le DOISearch in Google Scholar
[Grifone R., Demignon J., Giordani J., Niro C., Souil E., Bertin F., Laclef C., Xu P.X., Maire P. (2007). Eya1 and Eya2 proteins are required for hypaxial somitic myogenesis in the mouse embryo. Dev. Biol., 302: 602–616; https://doi.org/10.1016/j.ydbio.2006.08.059.10.1016/j.ydbio.2006.08.05917098221]Ouvrir le DOISearch in Google Scholar
[Gu L., Xu T., Huang W., Xie M., Sun S., Hou S. (2014). Identification and profiling of microRNAs in the embryonic breast muscle of Pekin duck. PLoS One, 9: 1–13; https://doi.org/10.1371/journal.pone.0086150.10.1371/journal.pone.0086150390048024465928]Ouvrir le DOISearch in Google Scholar
[Gu Z. (2004). The single nucleotide polymorphisms of the chicken myostatin gene are associated with skeletal muscle and adipose growth. Sci. China Ser. C 47, 25; https://doi.org/10.1360/02yc0201.10.1360/02yc020115382673]Ouvrir le DOISearch in Google Scholar
[Guo C.S., Degnin C., Fiddler T.A., Stauffer D., Thayer M.J. (2003). Regulation of MyoD activity and muscle cell differentiation by MDM2, pRb, and Sp1. J. Biol. Chem., 278: 22615–22622; https://doi.org/10.1074/jbc.M301943200.10.1074/jbc.301943200]Ouvrir le DOISearch in Google Scholar
[Hache R.J.G., Wiper-Bergeron N., Salem H.A., Wu D., Tomlinson J.J. (2007). Glucocorticoid-stimulated preadipocyte differentiation is mediated through acetylation of C/EBPbeta by GCN5. Proc. Natl. Acad. Sci., 104: 2703–2708; https://doi.org/10.1073/pnas.0607378104.10.1073/pnas.0607378104181524517301242]Ouvrir le DOISearch in Google Scholar
[Hadjiargyrou M., Lombardo F., Zhao S., Ahrens W., Joo J., Ahn H., Jurman M., White D.W., Rubin C.T. (2002). Transcriptional profiling of bone regeneration. Insight into the molecular complexity of wound repair. J. Biol. Chem., 277: 30177–30182; https://doi.org/10.1074/jbc.M203171200.10.1074/jbc.203171200]Ouvrir le DOISearch in Google Scholar
[Hak K.K., Yong S.L., Sivaprasad U., Malhotra A., Dutta A. (2006). Muscle-specific microRNA miR-206 promotes muscle differentiation. J. Cell Biol., 174: 677–687; https://doi.org/10.1083/jcb.200603008.10.1083/jcb.200603008206431116923828]Ouvrir le DOISearch in Google Scholar
[Hamburger V., Hamilton H.L. (1951). A series of normal stages in the development of the chick embryo. J. Morphol., 88: 49–92; https://doi.org/10.1002/jmor.1050880104.10.1002/jmor.1050880104]Ouvrir le DOISearch in Google Scholar
[Harding R.L., Velleman S.G. (2016). MicroRNA regulation of myogenic satellite cell proliferation and differentiation. Mol. Cell. Biochem., 412: 181–195; https://doi.org/10.1007/s11010-015-2625-6.10.1007/s11010-015-2625-626715133]Ouvrir le DOISearch in Google Scholar
[Harris L.K., Westwood M. (2012). Biology and significance of signalling pathways activated by IGF-II. Growth Factors; https://doi.org/10.3109/08977194.2011.640325.10.3109/08977194.2011.64032522136428]Ouvrir le DOISearch in Google Scholar
[Hennebry A., Berry C., Siriett V., O ’Callaghan P., Chau L., Watson T., Sharma M., Kambadur R. (2008). Myostatin regulates fiber-type composition of skeletal muscle by regulating MEF2 and MyoD gene expression. AJP Cell Physiol., 296: 525–534; https://doi.org/10.1152/ajpcell.00259.2007.10.1152/ajpcell.00259.200719129464]Ouvrir le DOISearch in Google Scholar
[Hicks J.A., Tembhurne P., Liu H.C. (2008). MicroRNA expression in chicken embryos. Poultry Sci., 87: 2335–2343; https://doi.org/10.3382/ps.2008-00114.10.3382/ps.2008-0011418931185]Ouvrir le DOISearch in Google Scholar
[Hicks J.A., Trakooljul N., Liu H.-C. (2010). Discovery of chicken microRNAs associated with lipogenesis and cell proliferation. Physiol. Genomics, 41: 185–193; https://doi.org/10.1152/physiolgenomics.00156.2009.10.1152/physiolgenomics.00156.200920103699]Ouvrir le DOISearch in Google Scholar
[Hillier L.W., Miller W., Birney E., Warren W., Hardison R.C., Ponting C.P., Bork P., Burt D.W., Groenen M.A.M., Delany M.E., Dodgson J.B. (2004). Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature, 432: 695–716; https://doi.org/10.1038/nature03154.10.1038/03154]Ouvrir le DOISearch in Google Scholar
[Hirai H., Verma M., Watanabe S., Tastad C., Asakura Y., Asakura A. (2010). MyoD regulates apoptosis of myoblasts through microRNA-mediated down-regulation of Pax3. J. Cell Biol., 191: 347–365; https://doi.org/10.1083/jcb.201006025.10.1083/jcb.201006025295847920956382]Ouvrir le DOISearch in Google Scholar
[Hu R., Pan W., Fedulov A. V., Jester W., Jones M.R., Weiss S.T., Panettieri R.A., Tantisira K., Lu Q. (2014). MicroRNA-10a controls airway smooth muscle cell proliferation via direct targeting of the PI3 kinase pathway. FASEB J., 28: 2347–2357; https://doi.org/10.1096/fj.13-247247.10.1096/fj.13-247247398684124522205]Search in Google Scholar
[Huang H., Xie C., Sun X., Ritchie R.P., Zhang J., Eugene Chen Y. (2010). miR-10a contributes to retinoid acid-induced smooth muscle cell differentiation. J. Biol. Chem., 285: 9383–9389; https://doi.org/10.1074/jbc.M109.095612.10.1074/jbc.M109.095612284318720118242]Search in Google Scholar
[Huang M.B., Xu H., Xie S.J., Zhou H., Qu L.H. (2011). Insulin-like growth factor-1 receptor is regulated by microRNA-133 during skeletal myogenesis. PLoS One, 6; https://doi.org/10.1371/journal.pone.0029173.10.1371/journal.pone.0029173324064022195016]Ouvrir le DOISearch in Google Scholar
[Huang T.H., Zhu M.J., Li X.Y., Zhao S.H. (2008). Discovery of porcine microRNAs and profiling from skeletal muscle tissues during development. PLoS One, 3; https://doi.org/10.1371/journal.pone.0003225.10.1371/journal.pone.0003225252894418795099]Ouvrir le DOISearch in Google Scholar
[Hunter R.B., Kandarian S.C. (2004). Disruption of either the Nfkb1 or the Bcl3 gene inhibits skeletal muscle atrophy. J. Clin. Invest., 114: 1504–1511; https://doi.org/10.1172/JCI200421696.10.1172/JCI200421696]Ouvrir le DOISearch in Google Scholar
[Ishibashi J., Perry R.L., Asakura A., Rudnicki M.A. (2005). MyoD induces myogenic differentiation through cooperation of its NH2- and COOH-terminal regions. J. Cell Biol., 171: 471–482; https://doi.org/10.1083/jcb.200502101.10.1083/jcb.200502101217126916275751]Ouvrir le DOISearch in Google Scholar
[Jebessa E., Ouyang H., Abdalla B.A., Li Z. (2017). Characterization of miRNA and their target gene during chicken embryo skeletal muscle development. Oncotarget, 9: 17309–17324; https://doi.org/10.18632/oncotarget.22457.10.18632/oncotarget.22457591511829707110]Search in Google Scholar
[Jia X., Lin H., Abdalla B.A., Nie Q. (2016). Characterization of miR-206 promoter and its association with birthweight in chicken. Int. J. Mol. Sci. 17, 559; https://doi.org/10.3390/ijms17040559.10.3390/ijms17040559484901527089330]Ouvrir le DOISearch in Google Scholar
[Juan A.H., Kumar R.M., Marx J.G., Young R.A., Sartorelli V. (2009). Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells. Mol. Cell., 36: 61–74; https://doi.org/10.1016/j.molcel.2009.08.008.10.1016/j.molcel.2009.08.008276124519818710]Ouvrir le DOISearch in Google Scholar
[Junqing L., Shuisheng H., Wei H., Junying Y., Wenwu W. (2011). Polymorphisms in the myostatin gene and their association with growth and carcass traits in duck. African J. Biotechnol., 10: 11309–11312; https://doi.org/10.5897/AJB11.512.10.5897/AJB11.512]Search in Google Scholar
[Kablar B., Rudnicki M.A. (2000). Skeletal muscle development in the mouse embryo. Histol. Histopathol.; https://doi.org/10.14670/HH-15.649.]Search in Google Scholar
[Khanna N., Ge Y., Chen J. (2014). MicroRNA-146b promotes myogenic differentiation and modulates multiple gene targets in muscle cells. PLoS One, 9; https://doi.org/10.1371/journal.pone.0100657.10.1371/journal.pone.0100657]Ouvrir le DOISearch in Google Scholar
[Khatri B., Seo D., Shouse S., Pan J.H., Hudson N.J., Kim J.K., Bottje W., Kong B.C. (2018). MicroRNA profiling associated with muscle growth in modern broilers compared to an unselected chicken breed. BMC Genomics, 19: 1–10; https://doi.org/10.1186/s12864-018-5061-7.10.1186/s12864-018-5061-7]Ouvrir le DOISearch in Google Scholar
[Koomkrong N., Theerawatanasirikul S., Boonkaewwan C., Jaturasitha S., Kayan A. (2015). Breed-related number and size of muscle fibres and their response to carcass quality in chickens. Ital. J. Anim. Sci., 14: 638–642; https://doi.org/10.4081/ijas.2015.4145.10.4081/ijas.2015.4145]Ouvrir le DOISearch in Google Scholar
[Koutsoulidou A., Mastroyiannopoulos N.P., Furling D., Uney J.B., Phylactou L.A. (2011). Expression of miR-1, miR-133a, miR-133b and miR-206 increases during development of human skeletal muscle. BMC Dev. Biol.,11: 1–9; https://doi.org/10.1186/1471-213X-11-34.10.1186/1471-213X-11-34]Ouvrir le DOISearch in Google Scholar
[Lagos-Quintana M., Rauhut R., Yalcin A., Meyer J., Lendeckel W., Tuschl T. (2002). Identification of tissue-specific MicroRNAs from mouse. Curr. Biol., 12: 735–739; https://doi.org/10.1016/S0960-9822(02)00809-6.10.1016/S0960-9822(02)00809-6]Ouvrir le DOISearch in Google Scholar
[Lawlor M.W., De Chene E.T., Roumm E., Geggel A.S., Moghadaszadeh B., Beggs A.H. (2010). Mutations of tropomyosin 3 (TPM3) are common and associated with type 1 myofiber hypotrophy in congenital fiber type disproportion. Hum. Mutat., 31: 176–183; https://doi.org/10.1002/humu.21157.10.1002/humu.21157281519919953533]Ouvrir le DOISearch in Google Scholar
[Li T., Wu R., Zhang Y., Zhu D. (2011). A systematic analysis of the skeletal muscle miRNA transcriptome of chicken varieties with divergent skeletal muscle growth identifies novel miRNAs and differentially expressed miRNAs. BMC Genomics, 12; https://doi.org/10.1186/1471-2164-12-186.10.1186/1471-2164-12-186310718421486491]Ouvrir le DOISearch in Google Scholar
[Li Z., Abdalla B.A., Zheng M., He X., Cai B., Han P., Ouyang H., Chen B., Nie Q., Zhang X. (2018). Systematic transcriptome-wide analysis of mRNA–miRNA interactions reveals the involvement of miR-142-5p and its target (FOXO3) in skeletal muscle growth in chickens. Mol. Genet. Genomics, 293: 69–80; https://doi.org/10.1007/s00438-017-1364-7.10.1007/s00438-017-1364-728866851]Ouvrir le DOISearch in Google Scholar
[Liang Y., Ridzon D., Wong L., Chen C. (2007). Characterization of microRNA expression profiles in normal human tissues. BMC Genomics, 8: 166; https://doi.org/10.1186/1471-2164-8-166.10.1186/1471-2164-8-166190420317565689]Search in Google Scholar
[Liu C., Gersch R.P., Hawke T.J., Hadjiargyrou M. (2010). Silencing of Mustn1 inhibits myogenic fusion and differentiation. Am. J. Physiol. Physiol., 298: 1100–1108; https://doi.org/10.1152/ajpcell.00553.2009.10.1152/ajpcell.00553.2009286739320130207]Ouvrir le DOISearch in Google Scholar
[Liu J., Luo X.J., Xiong A.W., Zhang Z., Di Yue S., Zhu M.S., Cheng S.Y. (2010). MicroRNA-214 promotes myogenic differentiation by facilitating exit from mitosis via down-regulation of proto-oncogene N-ras. J. Biol. Chem.; https://doi.org/10.1074/jbc.M110.115824.10.1074/jbc.M110.115824292409820534588]Ouvrir le DOISearch in Google Scholar
[Liu N., Bezprozvannaya S., Shelton J.M., Frisard M.I., Hulver M.W., McMillan R.P., Wu Y., Voelker K.A., Grange R.W., Richardson J.A., Bassel-Duby R., Olson E.N. (2011). Mice lacking microRNA 133a develop dynamin 2-dependent centronuclear myopathy. J. Clin. Invest., 121: 3258–3268; https://doi.org/10.1172/JCI46267.10.1172/JCI46267314873721737882]Ouvrir le DOISearch in Google Scholar
[Liu X., Cheng Y., Zhang S., Lin Y., Yang J., Zhangr C. (2009). A necessary role of miR-221 and miR-222 in vascular smooth muscle cell prolife ation and neointimal hyperplasia. Circ. Res., 104: 476–486; https://doi.org/10.1161/CIRCRESAHA.108.185363.10.1161/CIRCRESAHA.108.185363272829019150885]Ouvrir le DOISearch in Google Scholar
[Lu L., Zhou L., Chen E.Z., Sun K., Jiang P., Wang L., Su X., Sun H., Wang H. (2012). A novel YY1-miR-1 regulatory circuit in skeletal myogenesis revealed by genome-wide prediction of YY1-miRNA network. PLoS One 7. https://doi.org/10.1371/journal.pone.0027596.10.1371/journal.pone.0027596327107622319554]Ouvrir le DOISearch in Google Scholar
[Luo W., Nie Q., Zhang X. (2013). MicroRNAs involved in skeletal muscle differentiation. J. Genet. Genomics, 40: 107–116; https://doi.org/10.1016/j.jgg.2013.02.002.10.1016/j.jgg.2013.02.00223522383]Ouvrir le DOISearch in Google Scholar
[McCarthy J.J. (2008). MicroRNA-206: The skeletal muscle-specific myomiR. Biochim. Biophys. Acta – Gene Regul. Mech., 1779: 682–691; https://doi.org/10.1016/j.bbagrm.2008.03.001.10.1016/j.bbagrm.2008.03.001265639418381085]Ouvrir le DOISearch in Google Scholar
[McCarthy J.J., Esser K.A. (2006). MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J. Appl. Physiol., 102: 306–313; https://doi.org/10.1152/japplphysiol.00932.2006.10.1152/japplphysiol.00932.200617008435]Ouvrir le DOISearch in Google Scholar
[McDaneld T.G., Smith T.P.L., Doumit M.E., Miles J.R., Coutinho L.L., Sonstegard T.S., Matukumalli L.K., Nonneman D.J., Wiedmann R.T. (2009). MicroRNA transcriptome profiles during swine skeletal muscle development. BMC Genomics, 10: 77; https://doi.org/10.1186/1471-2164-10-77.10.1186/1471-2164-10-77264674719208255]Search in Google Scholar
[Mendias C.L., Bakhurin K.I., Faulkner J.A. (2008). Tendons of myostatin-deficient mice are small, brittle, and hypocellular. Proc. Natl. Acad. Sci., 105: 388–393; https://doi.org/10.1073/pnas.0707069105.10.1073/pnas.0707069105222422218162552]Ouvrir le DOISearch in Google Scholar
[Moss F.P., Leblond C.P. (1971). Satellite cells as the source of nuclei in muscles of growing rats. Anat. Rec., 170: 421–435; https://doi.org/10.1002/ar.1091700405.10.1002/ar.10917004055118594]Ouvrir le DOISearch in Google Scholar
[Naguibneva I., Ameyar-Zazoua M., Polesskaya A., Ait-Si-Ali S., Groisman R., Souidi M., Cuvellier S., Harel-Bellan A. (2006). The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat. Cell Biol., 8: 278–284; https://doi.org/10.1038/ncb1373.10.1038/ncb137316489342]Search in Google Scholar
[O’Rourke J.R., Mc Anally J., Moresi V., Gerard R.D., Sutherland L.B., Olson E.N., Richardson J.A., Small E.M. (2010). Regulation of PI3-kinase/Akt signaling by muscle-enriched microRNA-486. Proc. Natl. Acad. Sci., 107: 4218–4223; https://doi.org/10.1073/pnas.1000300107.10.1073/pnas.1000300107284009920142475]Ouvrir le DOISearch in Google Scholar
[Potthoff M.J., Olson E.N. (2007). MEF2: a central regulator of diverse developmental programs. Development, 134: 4131–4140; https://doi.org/10.1242/dev.008367.10.1242/dev.00836717959722]Ouvrir le DOISearch in Google Scholar
[Rathjen T., Pais H., Sweetman D., Moulton V., Munsterberg A., Dalmay T. (2009). High throughput sequencing of microRNAs in chicken somites. FEBS Lett., 583: 1422–1426; https://doi.org/10.1016/j.febslet.2009.03.048.10.1016/j.febslet.2009.03.04819328789]Ouvrir le DOISearch in Google Scholar
[Richards M.P., Poch S.M., Mc Murtry J.P. (2005). Expression of insulin-like growth factor system genes in liver and brain tissue during embryonic and post-hatch development of the turkey. Comp. Biochem. Physiol. – A Mol. Integr. Physiol., 141: 76–86; https://doi.org/10.1016/j.cbpb.2005.04.006.10.1016/j.cbpb.2005.04.00615905111]Ouvrir le DOISearch in Google Scholar
[Rivas D.A., Lessard S.J., Rice N.P., Lustgarten M.S., So K., Goodyear L.J., Parnell L.D., Fielding R.A. (2014). Diminished skeletal muscle microRNA expression with aging is associated with attenuated muscle plasticity and inhibition of IGF-1 signaling. FASEB J., 28: 4133–4147; https://doi.org/10.1096/fj.14-254490.10.1096/fj.14-254490505831824928197]Ouvrir le DOISearch in Google Scholar
[Saccone V., Puri P.L. (2010). Epigenetic regulation of skeletal myogenesis. Organogenesis, 6: 48–53; https://doi.org/10.4161/org.6.1.11293.10.4161/org.6.1.11293286174320592865]Ouvrir le DOISearch in Google Scholar
[Schellander K., Holker M., Hossain M.M., Tesfaye D., Salilew-Wondim D., Cinar M.U., Kocamis H., Mohammadi-Sangcheshmeh A. (2013). Expression of microRNA and microRNA processing machinery genes during early quail (Coturnix japonica) embryo development. Poultry Sci., 92: 787–797; https://doi.org/10.3382/ps.2012-02691.10.3382/ps.2012-0269123436530]Ouvrir le DOISearch in Google Scholar
[Shen H., McElhinny A.S., Cao Y., Gao P., Liu J., Bronson R., Griffin J.D., Wu L. (2006). The Notch coactivator, MAML1, functions as a novel coactivator for MEF2C-mediated transcription and is required for normal myogenesis. Genes Dev., 20: 675–688; https://doi.org/10.1101/gad.1383706.10.1101/gad.1383706141328416510869]Ouvrir le DOISearch in Google Scholar
[Song C.L., Liu H.H., Kou J., Lv L., Li L., Wang W.X., Wang J.W. (2012). Expression profile of insulin-like growth factor system genes in muscle tissues during the postnatal development growth stage in ducks. Genet. Mol. Res., 12: 4500–4514; https://doi.org/10.4238/2013.May.6.3.10.4238/2013..6.3]Ouvrir le DOISearch in Google Scholar
[Sumariwalla V.M., Klein W.H. (2001). Similar myogenic functions for myogenin and MRF4 but not MyoD in differentiated murine embryonic stem cells. Genesis, 30: 239–249; https://doi.org/10.1002/gene.1070.10.1002/gene.107011536430]Ouvrir le DOISearch in Google Scholar
[Sun Q., Zhang Y., Yang G., Chen X., Zhang Y., Cao G., Wang J., Sun Y., Zhang P., Fan M., Shao N., Yang X. (2008). Transforming growth factor-β-regulated miR-24 promotes skeletal muscle differentiation. Nucleic Acids Res., 36: 2690–2699; https://doi.org/10.1093/nar/gkn032.10.1093/nar/gkn032237743418353861]Ouvrir le DOISearch in Google Scholar
[Sun Y., Ge Y., Drnevich J., Zhao Y., Band M., Chen J. (2010). Mammalian target of rapamycin regulates miRNA-1 and follistatin in skeletal myogenesis. J. Cell Biol., 189: 1157–1169; https://doi.org/10.1083/jcb.200912093.10.1083/jcb.200912093289444820566686]Ouvrir le DOISearch in Google Scholar
[Sweetman D., Goljanek K., Rathjen T., Oustanina S., Braun T., Dalmay T., Münsterberg A. (2008). Specific requirements of MRFs for the expression of muscle specific microRNAs, miR-1, miR-206 and miR-133. Dev. Biol., 321: 491–499; https://doi.org/10.1016/j.ydbio.2008.06.019.10.1016/j.ydbio.2008.06.01918619954]Ouvrir le DOISearch in Google Scholar
[Takaya T., Ono K., Kawamura T., Takanabe R., Kaichi S., Morimoto T., Wada H., Kita T., Shimatsu A., Hasegawa K. (2009). MicroRNA-1 and MicroRNA-133 in spontaneous myocardial differentiation of mouse embryonic stem cells. Circ. J., 73: 1492–1497; https://doi.org/10.1253/circj.CJ-08-1032.10.1253/circj.CJ-08-1032]Ouvrir le DOISearch in Google Scholar
[Townley-Tilson W.H.D., Callis T.E., Wang D. (2010). MicroRNAs 1, 133, and 206: Critical factors of skeletal and cardiac muscle development, function, and disease. Int. J. Biochem. Cell Biol.; https://doi.org/10.1016/j.biocel.2009.03.002.10.1016/j.biocel.2009.03.002290432220619221]Ouvrir le DOISearch in Google Scholar
[van der Horst A., Burgering B.M.T., (2007). Stressing the role of FoxO proteins in lifespan and disease. Nat. Rev. Mol. Cell Biol., 8: 440–450; https://doi.org/10.1038/nrm2190.10.1038/nrm219017522590]Search in Google Scholar
[van Rooij E., Sutherland L.B., Qi X., Richardson J.A., Hill J., Olson E.N. (2007). Control of stress-dependent cardiac growth and gene expression by a microRNA. Science, 80: 575–579; https://doi.org/10.1126/science.1139089.10.1126/.1139089]Ouvrir le DOISearch in Google Scholar
[van Rooij E., Liu N., Olson E.N. (2008). MicroRNAs flex their muscles. Trends Genet., 24: 159–166; https://doi.org/10.1016/j.tig.2008.01.007.10.1016/j.tig.2008.01.00718325627]Ouvrir le DOISearch in Google Scholar
[Velleman S.G., Nestor K.E., Coy C.S., Harford I., Anthony N.B. (2010). Effect of posthatch feed restriction on broiler breast muscle development and muscle transcriptional regulatory factor gene and heparan sulfate proteoglycan expression. Int. J. Poult. Sci., 9: 417–425; https://doi.org/10.3923/ijps.2010.417.425.10.3923/ijps.2010.417.425]Ouvrir le DOISearch in Google Scholar
[Wang H., Li X., Liu H., Sun L., Zhang R., Li L., Wangding M., Wang J. (2016). Six1 induces protein synthesis signaling expression in duck myoblasts mainly via up-regulation of mTOR. Genet. Mol. Biol., 39: 151–161; https://doi.org/10.1590/1678-4685-GMB-2015-0075.10.1590/1678-4685-GMB-2015-0075480738227007909]Ouvrir le DOISearch in Google Scholar
[Wang S., Aurora A.B., Johnson B.A., Qi X., McAnally J., Hill J.A., Richardson J.A., Bassel-Duby R., Olson E.N. (2008). The endothelial-specific MicroRNA miR-126 governs vascular integrity and angiogenesis. Dev. Cell, 15: 261–271; https://doi.org/10.1016/j.devcel.2008.07.002.10.1016/j.devcel.2008.07.002268576318694565]Ouvrir le DOISearch in Google Scholar
[Wang X.H., Hu Z., Klein J.D., Zhang L., Fang F., Mitch W.E. (2011). Decreased miR-29 suppresses myogenesis in CKD. J. Am. Soc. Nephrol., 22: 2068–2076; https://doi.org/10.1681/ASN.2010121278.10.1681/ASN.2010121278323178321965375]Ouvrir le DOISearch in Google Scholar
[White R.B., Biérinx A., Gnocchi V.F., Zammit P.S. (2010). Dynamics of muscle fibre growth during postnatal mouse development, BMC Developmental Biology, 10.10.1186/1471-213X-10-21283699020175910]Search in Google Scholar
[Wood W.M., Etemad S., Yamamoto M., Goldhamer D.J. (2013). MyoD-expressing progenitors are essential for skeletal myogenesis and satellite cell development. Dev. Biol., 384: 114–127; https://doi.org/10.1016/j.ydbio.2013.09.012.10.1016/j.ydbio.2013.09.012383890124055173]Ouvrir le DOISearch in Google Scholar
[Wu N., Gu T., Lu L., Cao Z., Song Q., Wang Z., Zhang Y., Chang G., Xu Q., Chen G. (2019). Roles of miRNA-1 and miRNA-133 in the proliferation and differentiation of myoblasts in duck skeletal muscle. J. Cell. Physiol., 234: 3490–3499; https://doi.org/10.1002/jcp.26857.10.1002/jcp.2685730471101]Ouvrir le DOISearch in Google Scholar
[Xu T., Huang W., Zhang X., Ye B., Zhou H., Hou S. (2012). Identification and characterization of genes related to the development of breast muscles in Pekin duck. Mol. Biol. Rep., 39: 7647–7655; https://doi.org/10.1007/s11033-012-1599-7.10.1007/s11033-012-1599-722451153]Ouvrir le DOISearch in Google Scholar
[Xu T.S., Gu L.H., Zhang X.H., Ye B.G., Liu X.L., Hou S.S. (2013 a). Characterization of myostatin gene (MSTN) of Pekin duck and the association of its polymorphism with breast muscle traits. Genet. Mol. Res., 12: 3166–3177; https://doi.org/10.4238/2013.February.28.18.10.4238/2013.February.28.1823479163]Ouvrir le DOISearch in Google Scholar
[Xu T.S., Gu L.H., Zhang X.H., Huang W., Ye B.G., Liu X.L., Hou S.S. (2013 b). IGF-1 and FoxO3 expression profiles and developmental differences of breast and leg muscle in Pekin ducks during postnatal stages. J. Anim. Vet. Adv., 12: 852–858.]Search in Google Scholar
[Xu T.S., Gu L.H., Sun Y., Zhang X.H., Ye B.G., Liu X.L., Hou S.S. (2015). Characterization of MUSTN1 gene and its relationship with skeletal muscle development at postnatal stages in Pekin ducks. Genet. Mol. Res., 14: 4448–4460; https://doi.org/10.4238/2015.May.4.2.10.4238/2015..4.2]Ouvrir le DOISearch in Google Scholar
[Xu T.S., Gu L.H., Huang W., Xia W.L., Zhang Y.S., Zhang Y.G., Rong G., Schachtschneider K., Hou S.S. (2017). Gene expression profiling in Pekin duck embryonic breast muscle. PLoS One, 12: 1–18; https://doi.org/10.1371/journal.pone.0174612.10.1371/journal.pone.0174612541748328472139]Ouvrir le DOISearch in Google Scholar
[Yaffe D., Saxel O. (1977). A myogenic cell line with altered serum requirements for differentiation. Differentiation, 7: 159–166; https://doi.org/10.1111/j.1432-0436.1977.tb01507.x.10.1111/j.1432-0436.1977.tb01507.x558123]Ouvrir le DOISearch in Google Scholar
[Yin H., Pasut A., Soleimani V.D., Bentzinger C.F., Antoun G., Thorn S., Seale P., Fernando P., Van Ijcken W., Grosveld F., Dekemp R.A., Boushel R., Harper M.E., Rudnicki M.A. (2013). MicroRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Prdm16. Cell Metab., 17: 210–224; https://doi.org/10.1016/j.cmet.2013.01.004.10.1016/j.cmet.2013.01.004364165723395168]Ouvrir le DOISearch in Google Scholar
[Yin H., Zhang S., Gilbert E.R., Siegel P.B., Zhu Q., Wong E.A. (2014). Expression profiles of muscle genes in postnatal skeletal muscle in lines of chickens divergently selected for high and low body weight. Poultry Sci., 93: 147–154; https://doi.org/10.3382/ps.2013-03612.10.3382/ps.2013-0361224570434]Ouvrir le DOISearch in Google Scholar
[Zhang J., Ying Z.Z., Tang Z.L., Long L.Q., Li K. (2012). MicroRNA-148a promotes myogenic differentiation by targeting the ROCK1 gene. J. Biol. Chem. 287: 21093–21101; https://doi.org/10.1074/jbc.M111.330381.10.1074/jbc.M111.330381337553222547064]Ouvrir le DOISearch in Google Scholar
[Zhao Y., Samal E., Srivastava D. (2005). Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature, 436: 214–220; https://doi.org/10.1038/nature03817.10.1038/03817]Ouvrir le DOISearch in Google Scholar
[Zhao Y., Hou Y., Zhang K., Yuan B., Peng X. (2017). Identification of differentially expressed miRNAs through high-throughput sequencing in the chicken lung in response to Mycoplasma gallisepticum HS. Comp. Biochem. Physiol. – Part D Genomics Proteomics, 22: 146–156; https://doi.org/10.1016/j.cbd.2017.04.004.10.1016/j.cbd.2017.04.00428433919]Ouvrir le DOISearch in Google Scholar
[Zhu C., Song W., Tao Z., Liu H., Xu W., Zhang S., Li H. (2017). Deep RNA sequencing of pectoralis muscle transcriptomes during late-term embryonic to neonatal development in indigenous Chinese duck breeds. PLoS One, 12: 1–18; https://doi.org/10.1371/journal.pone.0180403.10.1371/journal.pone.0180403554242728771592]Ouvrir le DOISearch in Google Scholar