1. bookVolume 19 (2019): Issue 4 (October 2019)
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Mechanism and Functions of Identified miRNAs in Poultry Skeletal Muscle Development – A Review

Published Online: 30 Oct 2019
Page range: 887 - 904
Received: 24 Apr 2019
Accepted: 25 Jul 2019
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Development of the skeletal muscle goes through several complex processes regulated by numerous genetic factors. Although much efforts have been made to understand the mechanisms involved in increased muscle yield, little work is done about the miRNAs and candidate genes that are involved in the skeletal muscle development in poultry. Comprehensive research of candidate genes and single nucleotide related to poultry muscle growth is yet to be experimentally unraveled. However, over a few periods, studies in miRNA have disclosed that they actively participate in muscle formation, differentiation, and determination in poultry. Specifically, miR-1, miR-133, and miR-206 influence tissue development, and they are highly expressed in the skeletal muscles. Candidate genes such as CEBPB, MUSTN1, MSTN, IGF1, FOXO3, mTOR, and NFKB1, have also been identified to express in the poultry skeletal muscles development. However, further researches, analysis, and comprehensive studies should be made on the various miRNAs and gene regulatory factors that influence the skeletal muscle development in poultry. The objective of this review is to summarize recent knowledge in miRNAs and their mode of action as well as transcription and candidate genes identified to regulate poultry skeletal muscle development.

Keywords

Accili D., Arden K.C. (2004). FoxOs at the crossroads of cellular review metabolism, differentiation, and transformation. Cell, 117: 421–426.Search in Google Scholar

Andreote A.P.D., Rosario M.F., Ledur M.C., Jorge E.C., Sonstegard T.S., Matukumalli L., Coutinho L.L. (2014). Identification and characterization of microRNAs expressed in chicken skeletal muscle. Genet. Mol. Res., 13: 1465–1479; https://doi.org/10.4238/2014.March.6.5.10.4238/2014..6.5Open DOISearch in Google Scholar

Baquero-Perez B., Kuchipudi S.V., Nelli R.K., Chang K.C. (2012). A simplified but robust method for the isolation of avian and mammalian muscle satellite cells. BMC Cell Biol. 13, 16; https://doi.org/10.1186/1471-2121-13-16.10.1186/1471-2121-13-16343259722720831Open DOISearch in Google Scholar

Bassel-Duby R., Olson E.N. (2006). Signaling pathways in skeletal muscle remodeling. Annu. Rev. Biochem.,75: 19–37; https://doi.org/10.1146/annurev.biochem.75.103004.142622.10.1146/annurev.biochem.75.103004.14262216756483Open DOISearch in Google Scholar

Berkes C.A., Tapscott S.J. (2005). MyoD and the transcriptional control of myogenesis. Semin. Cell Dev. Biol., 16: 585–595; https://doi.org/10.1016/j.semcdb.2005.07.006.10.1016/j.semcdb.2005.07.00616099183Open DOISearch in Google Scholar

Bodine S.C., Stitt T.N., Gonzalez M., Kline W.O., Stover G.L., Bauerlein R., Zlotchenko E., Scrimgeour A., Lawrence J.C., Glass D.J., Yancopoulos G.D. (2001). Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat. Cell Biol., 3: 1014–1019; https://doi.org/10.1038/ncb1101-1014.10.1038/ncb1101-101411715023Open DOISearch in Google Scholar

Boutz P.L., Chawla G., Stoilov P., Black D.L. (2007). MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev., 21: 71–84; https://doi.org/10.1101/gad.1500707.10.1101/gad.1500707175990217210790Open DOISearch in Google Scholar

Braun T., Gautel M. (2011). Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nat. Rev. Mol. Cell Biol., 12: 349–361; https://doi.org/10.1038/nrm3118.10.1038/nrm311821602905Open DOISearch in Google Scholar

Buckingham M. (2006). Myogenic progenitor cells and skeletal myogenesis in vertebrates. Curr. Opin. Genet. Dev.; https://doi.org/10.1016/j.gde.2006.08.008.10.1016/j.gde.2006.08.00816930987Open DOISearch in Google Scholar

Buechner J., Tømte E., Haug B.H., Henriksen J.R., Løkke C., Flægstad T., Einvik C. (2011). Tumour-suppressor microRNAs let-7 and mir-101 target the proto-oncogene MYCN and inhibit cell proliferation in MYCN-amplified neuroblastoma. Br. J. Cancer, 105: 296–303; https://doi.org/10.1038/bjc.2011.220.10.1038/bjc.2011.220314280321654684Open DOISearch in Google Scholar

Burattini S., Ferri R., Battistelli M., Curci R., Luchetti F., Falcieri E. (2004). C2C12 murine myoblasts as a model of skeletal muscle development: Morpho-functional characterization. Eur. J. Histochem., 48: 223–233.Search in Google Scholar

Cardinalli B., Castellani L., Fasanaro P., Basso A., Alemà S., Martelli F., Falcone G. (2009). Microrna-221 and microrna-222 modulate differentiation and maturation of skeletal muscle cells. PLoS One, 4; https://doi.org/10.1371/journal.pone.0007607.10.1371/journal.pone.0007607276261419859555Search in Google Scholar

Castigliego L., Armani A., Grifoni G., Rosati R., Mazzi M., Gianfaldoni D., Guidi A. (2010). Effects of growth hormone treatment on the expression of somatotropic axis genes in the skeletal muscle of lactating Holstein cows. Domest. Anim. Endocrinol., 39: 40–53; https://doi.org/10.1016/j.domaniend.2010.02.00110.1016/j.domaniend.2010.02.00120399067Open DOISearch in Google Scholar

Chen B., Xu J., He X., Xu H., Li G., Du H., Nie Q., Zhang X. (2015). A genome-wide mRNA screen and functional analysis reveal FOXO3 as a candidate gene for chicken growth. PLoS One, 10: 1–22; https://doi.org/10.1371/journal.pone.0137087.10.1371/journal.pone.0137087456932826366565Open DOISearch in Google Scholar

Chen J.F., Mandel E.M., Thomson J.M., Wu Q., Callis T.E., Hammond S.M., Conlon F.L., Wang D.Z. (2006). The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet., 38: 228–233; https://doi.org/10.1038/ng1725.10.1038/ng1725253857616380711Open DOISearch in Google Scholar

Chen J.F., Tao Y., Li J., Deng Z., Yan Z., Xiao X., Wang D.Z. (2010) microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J. Cell Biol., 190: 867–879; https://doi.org/10.1083/jcb.200911036.10.1083/jcb.200911036293556520819939Open DOISearch in Google Scholar

Chen L., Li Y.S., Cui J., Ning J.N., Wang G.S., Qian G.S., Lu K.Z., Yi B. (2014). MiR-206 controls the phenotypic modulation of pulmonary arterial smooth muscle cells induced by serum from rats with Hepatopulmonary syndrome by regulating the target gene, Annexin A2. Cell. Physiol. Biochem., 34: 1768–1779; https://doi.org/10.1159/000366377.10.1159/00036637725427750Open DOISearch in Google Scholar

Chung F.W., Tellam R.L. (2008). MicroRNA-26a targets the histone methyltransferase enhancer of zeste homolog 2 during myogenesis. J. Biol. Chem., 283: 9836–9843; https://doi.org/10.1074/jbc.M709614200.10.1074/jbc.709614200Open DOISearch in Google Scholar

Clop A., Marcq F., Takeda H., Pirottin D., Tordoir X., Bibé B., Bouix J., Caiment F., Elsen J.M., Eychenne F., Larzul C., Laville E., Meish F., Milenkovic D., Tobin J., Charlier C., Georges M. (2006). A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat. Genet., 38: 813–818; https://doi.org/10.1038/ng1810.10.1038/ng181016751773Open DOISearch in Google Scholar

Crippa S., Cassano M., Messina G., Galli D., Galvez B.G., Curk T., Altomare C., Ronzoni F., Toelen J., Gijsbers R., Debyser Z., Janssens S., Zupan B., Zaza A., Cossu G., Sampaolesi M. (2011). miR669a and miR669q prevent skeletal muscle differentiation in postnatal cardiac progenitors. J. Cell Biol., 193: 1197–1212; https://doi.org/10.1083/jcb.201011099.10.1083/jcb.201011099321634021708977Open DOISearch in Google Scholar

Crist C.G., Montarras D., Pallafacchina G., Rocancourt D., Cumano A., Conway S.J., Buckingham M. (2009). Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression. Proc. Natl. Acad. Sci., 106: 13383–13387; https://doi.org/10.1073/pnas.0900210106.10.1073/pnas.0900210106272638119666532Open DOISearch in Google Scholar

Cui T.X., Schwartz J., Piwien-Pilipuk G., Lanning N., Rathore M., LaPensee C.R., Calinescu A.-A., Lin G., Jin H., Qin Z.S., Carter-Su C., Streeter C. (2011). C/EBPβ mediates growth hormone-regulated expression of multiple target genes. Mol. Endocrinol., 25: 681–693; https://doi.org/10.1210/me.2010-0232.10.1210/me.2010-0232306308621292824Open DOISearch in Google Scholar

Cutting A.D., Bannister S.C., Doran T.J., Sinclair A.H., Tizard M.V.L., Smith C.A. (2012). The potential role of microRNAs in regulating gonadal sex differentiation in the chicken embryo. Chromosom. Res., 20: 201–213; https://doi.org/10.1007/s10577-011-9263-y.10.1007/s10577-011-9263-y22161018Open DOISearch in Google Scholar

Darnell D.K., Kaur S., Stanislaw S., Konieczka J.K., Yatskievych T.A., Antin P.B. (2006). MicroRNA expression during chick embryo development. Dev. Dyn., 235: 3156–3165; https://doi.org/10.1002/dvdy.20956.10.1002/dvdy.2095617013880Open DOISearch in Google Scholar

De Mario A., Quintana-Cabrera R., Martinvalet D., Giacomello M. (2017). (Neuro)degenerated Mitochondria-ER contacts. Biochem. Biophys. Res. Commun., 483: 1096–1109; https://doi.org/10.1016/j.bbrc.2016.07.056.10.1016/j.bbrc.2016.07.05627416756Open DOISearch in Google Scholar

Dey B.K., Gagan J., Yan Z., Dutta A. (2012). miR-26a is required for skeletal muscle differentiation and regeneration in mice. Genes Dev., 26: 2180–2191; https://doi.org/10.1101/gad.198085.112.10.1101/gad.198085.112346573923028144Open DOISearch in Google Scholar

Draeger A., Babiychuk E.B., Schaller J., Palstra R.-J.T.S., Kämpfer U. (2002). Annexin VI participates in the formation of a reversible, membrane-cytoskeleton complex in smooth muscle cells. J. Biol. Chem., 274: 35191–3519; https://doi.org/10.1074/jbc.274.49.35191.10.1074/jbc.274.49.3519110575003Search in Google Scholar

Dupont J., Holzenberger M. (2003). Biology of insulin-like growth factors in development. Birth Defects Res. Part C: Embryo Today: Rev.; https://doi.org/10.1002/bdrc.10022.10.1002/bdrc.1002214745968Open DOISearch in Google Scholar

Egerman M.A., Glass D.J. (2014). Signaling pathways controlling skeletal muscle mass. Crit. Rev. Biochem. Mol. Biol., 49: 59–68; https://doi.org/10.3109/10409238.2013.857291.10.3109/10409238.2013.857291391308324237131Open DOISearch in Google Scholar

Elia L., Contu R., Quintavalle M., Varrone F., Chimenti C., Russo M.A., Cimino V., De Marinis L., Frustaci A., Catalucci D., Condorelli G. (2009). Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation, 120: 2377–2385; https://doi.org/10.1161/CIRCULATIONAHA.109.879429.10.1161/CIRCULATIONAHA.109.879429282565619933931Open DOISearch in Google Scholar

Eun J.L., Baek M., Gusev Y., Brackett D.J., Nuovo G.J., Schmittgen T.D. (2008). Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors. RNA, 14: 35–42; https://doi.org/10.1261/rna.804508.10.1261/rna.804508215102718025253Open DOISearch in Google Scholar

Feng Y., Cao J.H., Li X.Y., Zhao S.H. (2011). Inhibition of miR-214 expression represses proliferation and differentiation of C2C12 myoblasts. Cell Biochem. Funct., 29: 378–383; https://doi.org/10.1002/cbf.1760.10.1002/cbf.176021520152Open DOISearch in Google Scholar

Feng Y., Niu L.L., Wei W., Zhang W.Y., Li X.Y., Cao J.H., Zhao S.H. (2013). A feedback circuit between miR-133 and the ERK1/2 pathway involving an exquisite mechanism for regulating myoblast proliferation and differentiation. Cell Death Dis., 4: 934; https://doi.org/10.1038/cddis.2013.462.10.1038/cddis.2013.462384733824287695Open DOISearch in Google Scholar

Flynt A.S., Li N., Thatcher E.J., Solnica-Krezel L., Patton J.G. (2007). Zebrafish miR-214 modulates Hedgehog signaling to specify muscle cell fate. Nat. Genet., 39: 259–263; https://doi.org/10.1038/ng1953.10.1038/ng1953398279917220889Open DOISearch in Google Scholar

Gan W., He H., Li L. (2016). Molecular cloning, characterisation and functional analysis of the duck Forkhead box O3 (FOXO3) gene. Br. Poult. Sci., 57: 143–150; https://doi.org/10.1080/00071668.2015.113550.10.1080/00071668.2015.113550Open DOISearch in Google Scholar

Ge Y., Sun Y., Chen J. (2011). IGF-II is regulated by microRNA-125b in skeletal myogenesis. J. Cell Biol., 192: 69–81; https://doi.org/10.1083/jcb.201007165.10.1083/jcb.201007165301954721200031Open DOISearch in Google Scholar

Glazov E.A., Cottee P.A., Barris W.C., Moore R.J., Dalrymple B.P., Tizard M.L. (2008). A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. Genome Res., 18: 957–964; https://doi.org/10.1101/gr.074740.107.10.1101/gr.074740.107241316318469162Open DOISearch in Google Scholar

Goettsch C., Rauner M., Pacyna N., Hempel U., Bornstein S.R., Hofbauer L.C. (2011). MiR-125b regulates calcification of vascular smooth muscle cells. Am. J. Pathol., 179: 1594–1600; https://doi.org/10.1016/j.ajpath.2011.06.016.10.1016/j.ajpath.2011.06.016318138321806957Open DOISearch in Google Scholar

Grifone R., Demignon J., Giordani J., Niro C., Souil E., Bertin F., Laclef C., Xu P.X., Maire P. (2007). Eya1 and Eya2 proteins are required for hypaxial somitic myogenesis in the mouse embryo. Dev. Biol., 302: 602–616; https://doi.org/10.1016/j.ydbio.2006.08.059.10.1016/j.ydbio.2006.08.05917098221Open DOISearch in Google Scholar

Gu L., Xu T., Huang W., Xie M., Sun S., Hou S. (2014). Identification and profiling of microRNAs in the embryonic breast muscle of Pekin duck. PLoS One, 9: 1–13; https://doi.org/10.1371/journal.pone.0086150.10.1371/journal.pone.0086150390048024465928Open DOISearch in Google Scholar

Gu Z. (2004). The single nucleotide polymorphisms of the chicken myostatin gene are associated with skeletal muscle and adipose growth. Sci. China Ser. C 47, 25; https://doi.org/10.1360/02yc0201.10.1360/02yc020115382673Open DOISearch in Google Scholar

Guo C.S., Degnin C., Fiddler T.A., Stauffer D., Thayer M.J. (2003). Regulation of MyoD activity and muscle cell differentiation by MDM2, pRb, and Sp1. J. Biol. Chem., 278: 22615–22622; https://doi.org/10.1074/jbc.M301943200.10.1074/jbc.301943200Open DOISearch in Google Scholar

Hache R.J.G., Wiper-Bergeron N., Salem H.A., Wu D., Tomlinson J.J. (2007). Glucocorticoid-stimulated preadipocyte differentiation is mediated through acetylation of C/EBPbeta by GCN5. Proc. Natl. Acad. Sci., 104: 2703–2708; https://doi.org/10.1073/pnas.0607378104.10.1073/pnas.0607378104181524517301242Open DOISearch in Google Scholar

Hadjiargyrou M., Lombardo F., Zhao S., Ahrens W., Joo J., Ahn H., Jurman M., White D.W., Rubin C.T. (2002). Transcriptional profiling of bone regeneration. Insight into the molecular complexity of wound repair. J. Biol. Chem., 277: 30177–30182; https://doi.org/10.1074/jbc.M203171200.10.1074/jbc.203171200Open DOISearch in Google Scholar

Hak K.K., Yong S.L., Sivaprasad U., Malhotra A., Dutta A. (2006). Muscle-specific microRNA miR-206 promotes muscle differentiation. J. Cell Biol., 174: 677–687; https://doi.org/10.1083/jcb.200603008.10.1083/jcb.200603008206431116923828Open DOISearch in Google Scholar

Hamburger V., Hamilton H.L. (1951). A series of normal stages in the development of the chick embryo. J. Morphol., 88: 49–92; https://doi.org/10.1002/jmor.1050880104.10.1002/jmor.1050880104Open DOISearch in Google Scholar

Harding R.L., Velleman S.G. (2016). MicroRNA regulation of myogenic satellite cell proliferation and differentiation. Mol. Cell. Biochem., 412: 181–195; https://doi.org/10.1007/s11010-015-2625-6.10.1007/s11010-015-2625-626715133Open DOISearch in Google Scholar

Harris L.K., Westwood M. (2012). Biology and significance of signalling pathways activated by IGF-II. Growth Factors; https://doi.org/10.3109/08977194.2011.640325.10.3109/08977194.2011.64032522136428Open DOISearch in Google Scholar

Hennebry A., Berry C., Siriett V., O ’Callaghan P., Chau L., Watson T., Sharma M., Kambadur R. (2008). Myostatin regulates fiber-type composition of skeletal muscle by regulating MEF2 and MyoD gene expression. AJP Cell Physiol., 296: 525–534; https://doi.org/10.1152/ajpcell.00259.2007.10.1152/ajpcell.00259.200719129464Open DOISearch in Google Scholar

Hicks J.A., Tembhurne P., Liu H.C. (2008). MicroRNA expression in chicken embryos. Poultry Sci., 87: 2335–2343; https://doi.org/10.3382/ps.2008-00114.10.3382/ps.2008-0011418931185Open DOISearch in Google Scholar

Hicks J.A., Trakooljul N., Liu H.-C. (2010). Discovery of chicken microRNAs associated with lipogenesis and cell proliferation. Physiol. Genomics, 41: 185–193; https://doi.org/10.1152/physiolgenomics.00156.2009.10.1152/physiolgenomics.00156.200920103699Open DOISearch in Google Scholar

Hillier L.W., Miller W., Birney E., Warren W., Hardison R.C., Ponting C.P., Bork P., Burt D.W., Groenen M.A.M., Delany M.E., Dodgson J.B. (2004). Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature, 432: 695–716; https://doi.org/10.1038/nature03154.10.1038/03154Open DOISearch in Google Scholar

Hirai H., Verma M., Watanabe S., Tastad C., Asakura Y., Asakura A. (2010). MyoD regulates apoptosis of myoblasts through microRNA-mediated down-regulation of Pax3. J. Cell Biol., 191: 347–365; https://doi.org/10.1083/jcb.201006025.10.1083/jcb.201006025295847920956382Open DOISearch in Google Scholar

Hu R., Pan W., Fedulov A. V., Jester W., Jones M.R., Weiss S.T., Panettieri R.A., Tantisira K., Lu Q. (2014). MicroRNA-10a controls airway smooth muscle cell proliferation via direct targeting of the PI3 kinase pathway. FASEB J., 28: 2347–2357; https://doi.org/10.1096/fj.13-247247.10.1096/fj.13-247247398684124522205Search in Google Scholar

Huang H., Xie C., Sun X., Ritchie R.P., Zhang J., Eugene Chen Y. (2010). miR-10a contributes to retinoid acid-induced smooth muscle cell differentiation. J. Biol. Chem., 285: 9383–9389; https://doi.org/10.1074/jbc.M109.095612.10.1074/jbc.M109.095612284318720118242Search in Google Scholar

Huang M.B., Xu H., Xie S.J., Zhou H., Qu L.H. (2011). Insulin-like growth factor-1 receptor is regulated by microRNA-133 during skeletal myogenesis. PLoS One, 6; https://doi.org/10.1371/journal.pone.0029173.10.1371/journal.pone.0029173324064022195016Open DOISearch in Google Scholar

Huang T.H., Zhu M.J., Li X.Y., Zhao S.H. (2008). Discovery of porcine microRNAs and profiling from skeletal muscle tissues during development. PLoS One, 3; https://doi.org/10.1371/journal.pone.0003225.10.1371/journal.pone.0003225252894418795099Open DOISearch in Google Scholar

Hunter R.B., Kandarian S.C. (2004). Disruption of either the Nfkb1 or the Bcl3 gene inhibits skeletal muscle atrophy. J. Clin. Invest., 114: 1504–1511; https://doi.org/10.1172/JCI200421696.10.1172/JCI200421696Open DOISearch in Google Scholar

Ishibashi J., Perry R.L., Asakura A., Rudnicki M.A. (2005). MyoD induces myogenic differentiation through cooperation of its NH2- and COOH-terminal regions. J. Cell Biol., 171: 471–482; https://doi.org/10.1083/jcb.200502101.10.1083/jcb.200502101217126916275751Open DOISearch in Google Scholar

Jebessa E., Ouyang H., Abdalla B.A., Li Z. (2017). Characterization of miRNA and their target gene during chicken embryo skeletal muscle development. Oncotarget, 9: 17309–17324; https://doi.org/10.18632/oncotarget.22457.10.18632/oncotarget.22457591511829707110Search in Google Scholar

Jia X., Lin H., Abdalla B.A., Nie Q. (2016). Characterization of miR-206 promoter and its association with birthweight in chicken. Int. J. Mol. Sci. 17, 559; https://doi.org/10.3390/ijms17040559.10.3390/ijms17040559484901527089330Open DOISearch in Google Scholar

Juan A.H., Kumar R.M., Marx J.G., Young R.A., Sartorelli V. (2009). Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells. Mol. Cell., 36: 61–74; https://doi.org/10.1016/j.molcel.2009.08.008.10.1016/j.molcel.2009.08.008276124519818710Open DOISearch in Google Scholar

Junqing L., Shuisheng H., Wei H., Junying Y., Wenwu W. (2011). Polymorphisms in the myostatin gene and their association with growth and carcass traits in duck. African J. Biotechnol., 10: 11309–11312; https://doi.org/10.5897/AJB11.512.10.5897/AJB11.512Search in Google Scholar

Kablar B., Rudnicki M.A. (2000). Skeletal muscle development in the mouse embryo. Histol. Histopathol.; https://doi.org/10.14670/HH-15.649.Search in Google Scholar

Khanna N., Ge Y., Chen J. (2014). MicroRNA-146b promotes myogenic differentiation and modulates multiple gene targets in muscle cells. PLoS One, 9; https://doi.org/10.1371/journal.pone.0100657.10.1371/journal.pone.0100657Open DOISearch in Google Scholar

Khatri B., Seo D., Shouse S., Pan J.H., Hudson N.J., Kim J.K., Bottje W., Kong B.C. (2018). MicroRNA profiling associated with muscle growth in modern broilers compared to an unselected chicken breed. BMC Genomics, 19: 1–10; https://doi.org/10.1186/s12864-018-5061-7.10.1186/s12864-018-5061-7Open DOISearch in Google Scholar

Koomkrong N., Theerawatanasirikul S., Boonkaewwan C., Jaturasitha S., Kayan A. (2015). Breed-related number and size of muscle fibres and their response to carcass quality in chickens. Ital. J. Anim. Sci., 14: 638–642; https://doi.org/10.4081/ijas.2015.4145.10.4081/ijas.2015.4145Open DOISearch in Google Scholar

Koutsoulidou A., Mastroyiannopoulos N.P., Furling D., Uney J.B., Phylactou L.A. (2011). Expression of miR-1, miR-133a, miR-133b and miR-206 increases during development of human skeletal muscle. BMC Dev. Biol.,11: 1–9; https://doi.org/10.1186/1471-213X-11-34.10.1186/1471-213X-11-34Open DOISearch in Google Scholar

Lagos-Quintana M., Rauhut R., Yalcin A., Meyer J., Lendeckel W., Tuschl T. (2002). Identification of tissue-specific MicroRNAs from mouse. Curr. Biol., 12: 735–739; https://doi.org/10.1016/S0960-9822(02)00809-6.10.1016/S0960-9822(02)00809-6Open DOISearch in Google Scholar

Lawlor M.W., De Chene E.T., Roumm E., Geggel A.S., Moghadaszadeh B., Beggs A.H. (2010). Mutations of tropomyosin 3 (TPM3) are common and associated with type 1 myofiber hypotrophy in congenital fiber type disproportion. Hum. Mutat., 31: 176–183; https://doi.org/10.1002/humu.21157.10.1002/humu.21157281519919953533Open DOISearch in Google Scholar

Li T., Wu R., Zhang Y., Zhu D. (2011). A systematic analysis of the skeletal muscle miRNA transcriptome of chicken varieties with divergent skeletal muscle growth identifies novel miRNAs and differentially expressed miRNAs. BMC Genomics, 12; https://doi.org/10.1186/1471-2164-12-186.10.1186/1471-2164-12-186310718421486491Open DOISearch in Google Scholar

Li Z., Abdalla B.A., Zheng M., He X., Cai B., Han P., Ouyang H., Chen B., Nie Q., Zhang X. (2018). Systematic transcriptome-wide analysis of mRNA–miRNA interactions reveals the involvement of miR-142-5p and its target (FOXO3) in skeletal muscle growth in chickens. Mol. Genet. Genomics, 293: 69–80; https://doi.org/10.1007/s00438-017-1364-7.10.1007/s00438-017-1364-728866851Open DOISearch in Google Scholar

Liang Y., Ridzon D., Wong L., Chen C. (2007). Characterization of microRNA expression profiles in normal human tissues. BMC Genomics, 8: 166; https://doi.org/10.1186/1471-2164-8-166.10.1186/1471-2164-8-166190420317565689Search in Google Scholar

Liu C., Gersch R.P., Hawke T.J., Hadjiargyrou M. (2010). Silencing of Mustn1 inhibits myogenic fusion and differentiation. Am. J. Physiol. Physiol., 298: 1100–1108; https://doi.org/10.1152/ajpcell.00553.2009.10.1152/ajpcell.00553.2009286739320130207Open DOISearch in Google Scholar

Liu J., Luo X.J., Xiong A.W., Zhang Z., Di Yue S., Zhu M.S., Cheng S.Y. (2010). MicroRNA-214 promotes myogenic differentiation by facilitating exit from mitosis via down-regulation of proto-oncogene N-ras. J. Biol. Chem.; https://doi.org/10.1074/jbc.M110.115824.10.1074/jbc.M110.115824292409820534588Open DOISearch in Google Scholar

Liu N., Bezprozvannaya S., Shelton J.M., Frisard M.I., Hulver M.W., McMillan R.P., Wu Y., Voelker K.A., Grange R.W., Richardson J.A., Bassel-Duby R., Olson E.N. (2011). Mice lacking microRNA 133a develop dynamin 2-dependent centronuclear myopathy. J. Clin. Invest., 121: 3258–3268; https://doi.org/10.1172/JCI46267.10.1172/JCI46267314873721737882Open DOISearch in Google Scholar

Liu X., Cheng Y., Zhang S., Lin Y., Yang J., Zhangr C. (2009). A necessary role of miR-221 and miR-222 in vascular smooth muscle cell prolife ation and neointimal hyperplasia. Circ. Res., 104: 476–486; https://doi.org/10.1161/CIRCRESAHA.108.185363.10.1161/CIRCRESAHA.108.185363272829019150885Open DOISearch in Google Scholar

Lu L., Zhou L., Chen E.Z., Sun K., Jiang P., Wang L., Su X., Sun H., Wang H. (2012). A novel YY1-miR-1 regulatory circuit in skeletal myogenesis revealed by genome-wide prediction of YY1-miRNA network. PLoS One 7. https://doi.org/10.1371/journal.pone.0027596.10.1371/journal.pone.0027596327107622319554Open DOISearch in Google Scholar

Luo W., Nie Q., Zhang X. (2013). MicroRNAs involved in skeletal muscle differentiation. J. Genet. Genomics, 40: 107–116; https://doi.org/10.1016/j.jgg.2013.02.002.10.1016/j.jgg.2013.02.00223522383Open DOISearch in Google Scholar

McCarthy J.J. (2008). MicroRNA-206: The skeletal muscle-specific myomiR. Biochim. Biophys. Acta – Gene Regul. Mech., 1779: 682–691; https://doi.org/10.1016/j.bbagrm.2008.03.001.10.1016/j.bbagrm.2008.03.001265639418381085Open DOISearch in Google Scholar

McCarthy J.J., Esser K.A. (2006). MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J. Appl. Physiol., 102: 306–313; https://doi.org/10.1152/japplphysiol.00932.2006.10.1152/japplphysiol.00932.200617008435Open DOISearch in Google Scholar

McDaneld T.G., Smith T.P.L., Doumit M.E., Miles J.R., Coutinho L.L., Sonstegard T.S., Matukumalli L.K., Nonneman D.J., Wiedmann R.T. (2009). MicroRNA transcriptome profiles during swine skeletal muscle development. BMC Genomics, 10: 77; https://doi.org/10.1186/1471-2164-10-77.10.1186/1471-2164-10-77264674719208255Search in Google Scholar

Mendias C.L., Bakhurin K.I., Faulkner J.A. (2008). Tendons of myostatin-deficient mice are small, brittle, and hypocellular. Proc. Natl. Acad. Sci., 105: 388–393; https://doi.org/10.1073/pnas.0707069105.10.1073/pnas.0707069105222422218162552Open DOISearch in Google Scholar

Moss F.P., Leblond C.P. (1971). Satellite cells as the source of nuclei in muscles of growing rats. Anat. Rec., 170: 421–435; https://doi.org/10.1002/ar.1091700405.10.1002/ar.10917004055118594Open DOISearch in Google Scholar

Naguibneva I., Ameyar-Zazoua M., Polesskaya A., Ait-Si-Ali S., Groisman R., Souidi M., Cuvellier S., Harel-Bellan A. (2006). The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat. Cell Biol., 8: 278–284; https://doi.org/10.1038/ncb1373.10.1038/ncb137316489342Search in Google Scholar

O’Rourke J.R., Mc Anally J., Moresi V., Gerard R.D., Sutherland L.B., Olson E.N., Richardson J.A., Small E.M. (2010). Regulation of PI3-kinase/Akt signaling by muscle-enriched microRNA-486. Proc. Natl. Acad. Sci., 107: 4218–4223; https://doi.org/10.1073/pnas.1000300107.10.1073/pnas.1000300107284009920142475Open DOISearch in Google Scholar

Potthoff M.J., Olson E.N. (2007). MEF2: a central regulator of diverse developmental programs. Development, 134: 4131–4140; https://doi.org/10.1242/dev.008367.10.1242/dev.00836717959722Open DOISearch in Google Scholar

Rathjen T., Pais H., Sweetman D., Moulton V., Munsterberg A., Dalmay T. (2009). High throughput sequencing of microRNAs in chicken somites. FEBS Lett., 583: 1422–1426; https://doi.org/10.1016/j.febslet.2009.03.048.10.1016/j.febslet.2009.03.04819328789Open DOISearch in Google Scholar

Richards M.P., Poch S.M., Mc Murtry J.P. (2005). Expression of insulin-like growth factor system genes in liver and brain tissue during embryonic and post-hatch development of the turkey. Comp. Biochem. Physiol. – A Mol. Integr. Physiol., 141: 76–86; https://doi.org/10.1016/j.cbpb.2005.04.006.10.1016/j.cbpb.2005.04.00615905111Open DOISearch in Google Scholar

Rivas D.A., Lessard S.J., Rice N.P., Lustgarten M.S., So K., Goodyear L.J., Parnell L.D., Fielding R.A. (2014). Diminished skeletal muscle microRNA expression with aging is associated with attenuated muscle plasticity and inhibition of IGF-1 signaling. FASEB J., 28: 4133–4147; https://doi.org/10.1096/fj.14-254490.10.1096/fj.14-254490505831824928197Open DOISearch in Google Scholar

Saccone V., Puri P.L. (2010). Epigenetic regulation of skeletal myogenesis. Organogenesis, 6: 48–53; https://doi.org/10.4161/org.6.1.11293.10.4161/org.6.1.11293286174320592865Open DOISearch in Google Scholar

Schellander K., Holker M., Hossain M.M., Tesfaye D., Salilew-Wondim D., Cinar M.U., Kocamis H., Mohammadi-Sangcheshmeh A. (2013). Expression of microRNA and microRNA processing machinery genes during early quail (Coturnix japonica) embryo development. Poultry Sci., 92: 787–797; https://doi.org/10.3382/ps.2012-02691.10.3382/ps.2012-0269123436530Open DOISearch in Google Scholar

Shen H., McElhinny A.S., Cao Y., Gao P., Liu J., Bronson R., Griffin J.D., Wu L. (2006). The Notch coactivator, MAML1, functions as a novel coactivator for MEF2C-mediated transcription and is required for normal myogenesis. Genes Dev., 20: 675–688; https://doi.org/10.1101/gad.1383706.10.1101/gad.1383706141328416510869Open DOISearch in Google Scholar

Song C.L., Liu H.H., Kou J., Lv L., Li L., Wang W.X., Wang J.W. (2012). Expression profile of insulin-like growth factor system genes in muscle tissues during the postnatal development growth stage in ducks. Genet. Mol. Res., 12: 4500–4514; https://doi.org/10.4238/2013.May.6.3.10.4238/2013..6.3Open DOISearch in Google Scholar

Sumariwalla V.M., Klein W.H. (2001). Similar myogenic functions for myogenin and MRF4 but not MyoD in differentiated murine embryonic stem cells. Genesis, 30: 239–249; https://doi.org/10.1002/gene.1070.10.1002/gene.107011536430Open DOISearch in Google Scholar

Sun Q., Zhang Y., Yang G., Chen X., Zhang Y., Cao G., Wang J., Sun Y., Zhang P., Fan M., Shao N., Yang X. (2008). Transforming growth factor-β-regulated miR-24 promotes skeletal muscle differentiation. Nucleic Acids Res., 36: 2690–2699; https://doi.org/10.1093/nar/gkn032.10.1093/nar/gkn032237743418353861Open DOISearch in Google Scholar

Sun Y., Ge Y., Drnevich J., Zhao Y., Band M., Chen J. (2010). Mammalian target of rapamycin regulates miRNA-1 and follistatin in skeletal myogenesis. J. Cell Biol., 189: 1157–1169; https://doi.org/10.1083/jcb.200912093.10.1083/jcb.200912093289444820566686Open DOISearch in Google Scholar

Sweetman D., Goljanek K., Rathjen T., Oustanina S., Braun T., Dalmay T., Münsterberg A. (2008). Specific requirements of MRFs for the expression of muscle specific microRNAs, miR-1, miR-206 and miR-133. Dev. Biol., 321: 491–499; https://doi.org/10.1016/j.ydbio.2008.06.019.10.1016/j.ydbio.2008.06.01918619954Open DOISearch in Google Scholar

Takaya T., Ono K., Kawamura T., Takanabe R., Kaichi S., Morimoto T., Wada H., Kita T., Shimatsu A., Hasegawa K. (2009). MicroRNA-1 and MicroRNA-133 in spontaneous myocardial differentiation of mouse embryonic stem cells. Circ. J., 73: 1492–1497; https://doi.org/10.1253/circj.CJ-08-1032.10.1253/circj.CJ-08-1032Open DOISearch in Google Scholar

Townley-Tilson W.H.D., Callis T.E., Wang D. (2010). MicroRNAs 1, 133, and 206: Critical factors of skeletal and cardiac muscle development, function, and disease. Int. J. Biochem. Cell Biol.; https://doi.org/10.1016/j.biocel.2009.03.002.10.1016/j.biocel.2009.03.002290432220619221Open DOISearch in Google Scholar

van der Horst A., Burgering B.M.T., (2007). Stressing the role of FoxO proteins in lifespan and disease. Nat. Rev. Mol. Cell Biol., 8: 440–450; https://doi.org/10.1038/nrm2190.10.1038/nrm219017522590Search in Google Scholar

van Rooij E., Sutherland L.B., Qi X., Richardson J.A., Hill J., Olson E.N. (2007). Control of stress-dependent cardiac growth and gene expression by a microRNA. Science, 80: 575–579; https://doi.org/10.1126/science.1139089.10.1126/.1139089Open DOISearch in Google Scholar

van Rooij E., Liu N., Olson E.N. (2008). MicroRNAs flex their muscles. Trends Genet., 24: 159–166; https://doi.org/10.1016/j.tig.2008.01.007.10.1016/j.tig.2008.01.00718325627Open DOISearch in Google Scholar

Velleman S.G., Nestor K.E., Coy C.S., Harford I., Anthony N.B. (2010). Effect of posthatch feed restriction on broiler breast muscle development and muscle transcriptional regulatory factor gene and heparan sulfate proteoglycan expression. Int. J. Poult. Sci., 9: 417–425; https://doi.org/10.3923/ijps.2010.417.425.10.3923/ijps.2010.417.425Open DOISearch in Google Scholar

Wang H., Li X., Liu H., Sun L., Zhang R., Li L., Wangding M., Wang J. (2016). Six1 induces protein synthesis signaling expression in duck myoblasts mainly via up-regulation of mTOR. Genet. Mol. Biol., 39: 151–161; https://doi.org/10.1590/1678-4685-GMB-2015-0075.10.1590/1678-4685-GMB-2015-0075480738227007909Open DOISearch in Google Scholar

Wang S., Aurora A.B., Johnson B.A., Qi X., McAnally J., Hill J.A., Richardson J.A., Bassel-Duby R., Olson E.N. (2008). The endothelial-specific MicroRNA miR-126 governs vascular integrity and angiogenesis. Dev. Cell, 15: 261–271; https://doi.org/10.1016/j.devcel.2008.07.002.10.1016/j.devcel.2008.07.002268576318694565Open DOISearch in Google Scholar

Wang X.H., Hu Z., Klein J.D., Zhang L., Fang F., Mitch W.E. (2011). Decreased miR-29 suppresses myogenesis in CKD. J. Am. Soc. Nephrol., 22: 2068–2076; https://doi.org/10.1681/ASN.2010121278.10.1681/ASN.2010121278323178321965375Open DOISearch in Google Scholar

White R.B., Biérinx A., Gnocchi V.F., Zammit P.S. (2010). Dynamics of muscle fibre growth during postnatal mouse development, BMC Developmental Biology, 10.10.1186/1471-213X-10-21283699020175910Search in Google Scholar

Wood W.M., Etemad S., Yamamoto M., Goldhamer D.J. (2013). MyoD-expressing progenitors are essential for skeletal myogenesis and satellite cell development. Dev. Biol., 384: 114–127; https://doi.org/10.1016/j.ydbio.2013.09.012.10.1016/j.ydbio.2013.09.012383890124055173Open DOISearch in Google Scholar

Wu N., Gu T., Lu L., Cao Z., Song Q., Wang Z., Zhang Y., Chang G., Xu Q., Chen G. (2019). Roles of miRNA-1 and miRNA-133 in the proliferation and differentiation of myoblasts in duck skeletal muscle. J. Cell. Physiol., 234: 3490–3499; https://doi.org/10.1002/jcp.26857.10.1002/jcp.2685730471101Open DOISearch in Google Scholar

Xu T., Huang W., Zhang X., Ye B., Zhou H., Hou S. (2012). Identification and characterization of genes related to the development of breast muscles in Pekin duck. Mol. Biol. Rep., 39: 7647–7655; https://doi.org/10.1007/s11033-012-1599-7.10.1007/s11033-012-1599-722451153Open DOISearch in Google Scholar

Xu T.S., Gu L.H., Zhang X.H., Ye B.G., Liu X.L., Hou S.S. (2013 a). Characterization of myostatin gene (MSTN) of Pekin duck and the association of its polymorphism with breast muscle traits. Genet. Mol. Res., 12: 3166–3177; https://doi.org/10.4238/2013.February.28.18.10.4238/2013.February.28.1823479163Open DOISearch in Google Scholar

Xu T.S., Gu L.H., Zhang X.H., Huang W., Ye B.G., Liu X.L., Hou S.S. (2013 b). IGF-1 and FoxO3 expression profiles and developmental differences of breast and leg muscle in Pekin ducks during postnatal stages. J. Anim. Vet. Adv., 12: 852–858.Search in Google Scholar

Xu T.S., Gu L.H., Sun Y., Zhang X.H., Ye B.G., Liu X.L., Hou S.S. (2015). Characterization of MUSTN1 gene and its relationship with skeletal muscle development at postnatal stages in Pekin ducks. Genet. Mol. Res., 14: 4448–4460; https://doi.org/10.4238/2015.May.4.2.10.4238/2015..4.2Open DOISearch in Google Scholar

Xu T.S., Gu L.H., Huang W., Xia W.L., Zhang Y.S., Zhang Y.G., Rong G., Schachtschneider K., Hou S.S. (2017). Gene expression profiling in Pekin duck embryonic breast muscle. PLoS One, 12: 1–18; https://doi.org/10.1371/journal.pone.0174612.10.1371/journal.pone.0174612541748328472139Open DOISearch in Google Scholar

Yaffe D., Saxel O. (1977). A myogenic cell line with altered serum requirements for differentiation. Differentiation, 7: 159–166; https://doi.org/10.1111/j.1432-0436.1977.tb01507.x.10.1111/j.1432-0436.1977.tb01507.x558123Open DOISearch in Google Scholar

Yin H., Pasut A., Soleimani V.D., Bentzinger C.F., Antoun G., Thorn S., Seale P., Fernando P., Van Ijcken W., Grosveld F., Dekemp R.A., Boushel R., Harper M.E., Rudnicki M.A. (2013). MicroRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Prdm16. Cell Metab., 17: 210–224; https://doi.org/10.1016/j.cmet.2013.01.004.10.1016/j.cmet.2013.01.004364165723395168Open DOISearch in Google Scholar

Yin H., Zhang S., Gilbert E.R., Siegel P.B., Zhu Q., Wong E.A. (2014). Expression profiles of muscle genes in postnatal skeletal muscle in lines of chickens divergently selected for high and low body weight. Poultry Sci., 93: 147–154; https://doi.org/10.3382/ps.2013-03612.10.3382/ps.2013-0361224570434Open DOISearch in Google Scholar

Zhang J., Ying Z.Z., Tang Z.L., Long L.Q., Li K. (2012). MicroRNA-148a promotes myogenic differentiation by targeting the ROCK1 gene. J. Biol. Chem. 287: 21093–21101; https://doi.org/10.1074/jbc.M111.330381.10.1074/jbc.M111.330381337553222547064Open DOISearch in Google Scholar

Zhao Y., Samal E., Srivastava D. (2005). Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature, 436: 214–220; https://doi.org/10.1038/nature03817.10.1038/03817Open DOISearch in Google Scholar

Zhao Y., Hou Y., Zhang K., Yuan B., Peng X. (2017). Identification of differentially expressed miRNAs through high-throughput sequencing in the chicken lung in response to Mycoplasma gallisepticum HS. Comp. Biochem. Physiol. – Part D Genomics Proteomics, 22: 146–156; https://doi.org/10.1016/j.cbd.2017.04.004.10.1016/j.cbd.2017.04.00428433919Open DOISearch in Google Scholar

Zhu C., Song W., Tao Z., Liu H., Xu W., Zhang S., Li H. (2017). Deep RNA sequencing of pectoralis muscle transcriptomes during late-term embryonic to neonatal development in indigenous Chinese duck breeds. PLoS One, 12: 1–18; https://doi.org/10.1371/journal.pone.0180403.10.1371/journal.pone.0180403554242728771592Open DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo