1. bookVolumen 25 (2021): Edición 2 (December 2021)
Detalles de la revista
License
Formato
Revista
eISSN
2344-150X
Primera edición
30 Jul 2013
Calendario de la edición
2 veces al año
Idiomas
Inglés
access type Acceso abierto

Effect of medium composition on cell envelope proteinase production by Lactobacillus plantarum LP69

Publicado en línea: 30 Dec 2021
Volumen & Edición: Volumen 25 (2021) - Edición 2 (December 2021)
Páginas: 261 - 274
Recibido: 02 Oct 2021
Aceptado: 11 Dec 2021
Detalles de la revista
License
Formato
Revista
eISSN
2344-150X
Primera edición
30 Jul 2013
Calendario de la edición
2 veces al año
Idiomas
Inglés
Abstract

Cell envelope proteases (CEPs) can break down milk protein into peptides with different functions, which are of great benefit to human health. Therefore, the high-yield CEPs of Lactobacillus plantarum have the potential to produce functional dairy products. In previous experiments, we found that Na2HPO4, inulin, casein peptone and leucine have significant effects on CEP production by Lactobacillus plantarum LP69. So we proceeded to optimize the composition of the CEP-producing culture medium of L. plantarum through Box-Behnken design and response surface methodology. The protease activity, protein content and specific activity of CEPs produced by L. plantarum by inulin (0.2, 0.3, 0.4 %), casein peptone (0.4, 0.6, 0.8 %), Na2HPO4 (0.50, 0.52, 0.54 %) and leucine (14, 16, 18 mg/L) were evaluated. The optimal ratio of medium is 0.4 % inulin, 0.66 % casein peptone, 0.5 % Na2HPO4 and 14.04 mg/L Leucine. The final enzyme activity reached (24.46±0.81) U/mL, and the specific activity reached (1.41±0.46) U/mg.

Keywords

1. Agyei, D., Potumarthi, R., Danquah, M.K. (2012a). Optimisation of batch culture conditions for cell-envelope-a proteinase production from Lactobacillus delbrueckii subsp. lactis ATCC® 7830™. Applied Biochemistry and Biotechnology, 168(5), 1035-1050.10.1007/s12010-012-9839-9 Search in Google Scholar

2. Agyei, D., Danquah, M.K. (2012b). In-depth characterization of Lactobacillus delbrueckii subsp. lactis 313 for growth and cell-envelope-associated proteinase production. Biochemical Engineering Journal, 64, 61-68.10.1016/j.bej.2012.03.006 Search in Google Scholar

3. Agyei, D., Danquah, M.K. (2012c). Carbohydrate utilization affects Lactobacillus delbrueckii subsp. lactis 313 cell-enveloped-associated proteinase production. Biotechnology and Bioprocess Engineering, 17(4), 787-794.10.1007/s12257-012-0106-2 Search in Google Scholar

4. Agyei, D., Tambimuttu, S.L., Kasargod, B., Gao, Y., He, L. (2014). Quick and low cost immobilization of proteinases on polyesters: comparison of lactobacilli cell-envelope proteinase and trypsin for protein degradation. Journal of Biotechnology, 188, 53-60.10.1016/j.jbiotec.2014.08.007 Search in Google Scholar

5. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248–254. http://dx.doi.org/10.1016/0003-2697(76)90527-310.1016/0003-2697(76)90527-3 Search in Google Scholar

6. Borsting, M.W., Qvist, K.B., Brockmann, E., Vindelov, J., Pedersen, T.L., Vogensen, F.K. (2015). Classification of lactococcus lactis cell envelope proteinase based on gene sequencing, peptides formed after hydrolysis of milk, and computer modeling. Journal of Dairy Science, 98(1), 68-77.10.3168/jds.2014-851725465631 Search in Google Scholar

7. Chen, H., Huang, J., Cao, B.Y., Chen, L., Song, N. & Lei, N. (2018). Study of Extraction and Enzymatic Properties of Cell-Envelope Proteinases from a Novel Wild Lactobacillus plantarum LP69. Catalysts, 8(8). 325. DOI: 10.3390/catal808032510.3390/catal8080325 Search in Google Scholar

8. Chen, L., Zhang, Q.H., Ji, Z., Shu, G.W., Chen, H. (2018). Production and fermentation characteristics of angiotensin-I-converting enzyme inhibitory peptides of goat milk fermented by a novel wild Lactobacillus plantarum 69, LWT - Food Science and Technology, 91, 532-540.10.1016/j.lwt.2018.02.002 Search in Google Scholar

9. Cheng Y.(2019). The application of lactic acid bacteria in food. Journal of Anyang Institute of Technology, 18(04): 41-43. Search in Google Scholar

10. Cheng, F.F., Chen, H.,Lei,N., Zhang,M.,;Wan,H.C.(2019a).Effects of Carbon and Nitrogen Sources on Activity of Cell Envelope Proteinase Produced by Lactobacillus plantarum LP69.Acta Universitatis Cibiniensis. Series E: Food Technology,23(1):11-18.10.2478/aucft-2019-0002 Search in Google Scholar

11. Cheng, F.F., Chen,H.,Lei,N.,Zhang,M.,Wan,H.C.,;Shu,G.W.(2019b).Effect of prebiotics, inorganic salts and amino acids f or cell envelope proteinase production from Lactobacillus plantarum LP69.Acta scientiarum polonorum. Technologia alimentaria,18(3):269-278.10.17306/J.AFS.2019.0656 Search in Google Scholar

12. Cheng, F.F., Shu, G.W.,Chen,H.,Lei,N.,Song,N.,Zhang,M.(2019c).Screening of the main nutrients for cell envelope proteinases production by Lactobacillus plantarum LP69 using Plackett-Burman design.The Annals of the University of Dunarea de Jos of Galati. Fascicle VI. Food Technology,43(2):143-156.10.35219/foodtechnology.2019.2.10 Search in Google Scholar

13. Ding S.Y., Lei W.P., Liu C.G., Zhang Y.C., Wang J.Q., Wang Z.N.(2021).Study on the probiotic properties of Lactobacillus plantarum from different sources. China Dairy Industry, 49(01): 20-24. Search in Google Scholar

14. Fang, F., Ji, L.L., Zhang, Y.B., Zhang, H.P., Meng,H.B.L.G.. (2008). Screening of thermoduric proteinase-producing lactic acid bacteria, conditions of enzyme production and properties of produced thermoduric proteinase. Food Science, 29(10), 375-379. Search in Google Scholar

15. Gu,R.X., (2000)Study on the biosynthesis and physiological function characteristics of lactic acid bacteria exopolysaccharide. Northeast Agricultural University. Search in Google Scholar

16. Griffiths, M.W.,Tellez,A.M.(2013). Lactobacillus helveticus :the proteolytic system. Frontiers in Microbiology. 4(30): 1-9. Search in Google Scholar

17. Hebert, E. M., Raya, R. R., De Giori, G. S. (2004). Nutritional requirements of Lactobacillus delbrueckii subsp. lactis in a chemically defined medium. Curr. Microbiol., 49(5), 341–345. http://dx.doi.org/10.1007/s00284-004-4357-910.1007/s00284-004-4357-915486708 Search in Google Scholar

18. Huang J.(2019). Isolation, purification and identification of 4 strains of Lactobacillus cell wall protease. Shaanxi University of Science and Technology, 19(09). Search in Google Scholar

19. Liu,Y., Qiao,S.T., Li,J.W.,Tian,J.L., Dan,T.,, Sun,T.S.(2020).Effects of different nitrogen sources on the production and structure of extracellular polysaccharides of Streptococcus thermophilus. Chinese Society for Food Science and Technology, 2. Search in Google Scholar

20. Miyamoto,M.,Ueno,H.M.,Watanabe,M.(2015). Distinctive proteolytic activity of cell envelope proteinase of Lactobacillus helveticus isolated from airag,a traditional Mongolian fermented mare’s milk. International Journal of Food Microbiology,197,65–71.10.1016/j.ijfoodmicro.2014.12.01225557185 Search in Google Scholar

21. Ngo, L. T. A., Pham, T. L., Le, V. V. M. (2008). Purification of endopolygalacturonase from submerged culture of Aspergillus awamori L1 using a two-step procedure: Enzyme precipitation and gel filtration. Int. Food Res. J., 15, 135–140. Search in Google Scholar

22. Pang,S.Y., Han,W.W., Jiang,Z.M., Du,P.,Hou,J.C.(2018).The effect of nitrogen source on the expression of key protease genes of Lactobacillus bulgaricus. Chinese Journal of Food Science, 18(07): 37-45. Search in Google Scholar

23. Ren,C.,Faas,M.M.,Vos,P.D.(2020).Disease managing capacities and mechanisms of host effects of lactic acid bacteria.Critical Reviews in Food Science and Nutrition.61(8),1365-1393.10.1080/10408398.2020.175862532366110 Search in Google Scholar

24. Ren X.F, Pan D.D., Cao J.X., Zeng X.Q. (2013).Extraction and purification of cell wall protease from Lactobacillus acidophilus JQ-1. Food Industry Science and Technology, 13(12),195-199. Search in Google Scholar

25. Ren, X. F., Pan, D. D., Zeng, X. Q., Zhao, Z. W., Zhu, D. D. (2014). Optimization of culture conditions and fermentation conditions for Cell Wall Proteinase (CEP) production by Lactobacillus acidophilus. J. Chinese Inst. Food Sci. Technol,14(2), 146–153. Search in Google Scholar

26. Ren, X.F.,Pan, D.D., Wu, Z; Zeng, X.Q., Sun, Y.Y., Cao, J.X.(2015). Limited hydrolysis of β-casein by cell wall proteinase and its effect on hydrolysates’s conformational and structural properties. International Journal of Food Science & Technology, 50(1), 55–61. Doi:10.1111/ijfs.1270510.1111/ijfs.12705 Search in Google Scholar

27. Sadat-Mekmene,L.,Genay,M.,Atlan,D.(2011).Original features of cell-envelope proteinases of Lactobacillus helveticus. International Journal of Food Microbiology,146(1),1–13.10.1016/j.ijfoodmicro.2011.01.03921354644 Search in Google Scholar

28. Shu, G.W., Lei, N., Chen, H., Hu, M. & Yang, H. (2016). Application of central composite design to optimize the amount of carbon source and prebiotics for Bifidobacterium bifi-dum BB01. Acta Universitatis Cibiniensis. Series E: Food Technology, 20(1), 41-52. DOI: 10.1515/aucft-2016-000310.1515/aucft-2016-0003 Search in Google Scholar

29. Savedboworn, W., Niyomrat, S., Naknovn, J., Phattayakorn, K. (2018). Impact of inulin on viability and storage stability of probiotic Lactobacillus plantarum TISTR 2075 in fermented rice extract. Agriculture and Natural Resources, 51(6), 463-469.10.1016/j.anres.2018.03.008 Search in Google Scholar

30. Spano Giuseppe.(2021). Editorial:Lactic acid bacteria (probiotics), fermented milk and health.Food Bioscience,41. DOI: 10.1016/J.FBIO.2021.10093810.1016/j.fbio.2021.100938 Search in Google Scholar

31. Tatsuya, U., Jung-Hye, C., Hor-Gil, H. (2015). Changes in human gut microbiota influence- d by probiotic fermented milk ingestion. Journal Dairy Science, 98(6), 3568-3576. DOI: 10.3168/jds.2014-894310.3168/jds.2014-894325864056 Search in Google Scholar

32. Tao,H.Y.,Xu,X.W.,Wang,M.J.,Li,S.L.,Wei,J.(2021).Research progress on the probiotic properties and application of lactic acid bacteria.Anhui Agricultural Science Bulletin, 27(21),45-48. Search in Google Scholar

33. Wu Z., Pan D.D., Yan L.(2011). Isolation of Lactobacillus casei cell wall protease and the characteristics of hydrolyzed casein products. Food Science, 11(21),188-192. Search in Google Scholar

34. Wu, Z., Pan, D. D. (2013). Optimization of culture medium for the production of cell envelope proteinase by Lactobacillus Casei DI-1. J. Chinese Inst. Food Sci. Technol., 13(2), 108–115. Search in Google Scholar

35. Wu, W. Q., Wang, L. L., Zhao, J. X., Zhang, H., Chen, W. (2019). Research progress on physiological characteristics and health benefits of Lactobacillus plantarum. Food and fermentation industries, 45(1), 1-13. http://dx.doi.org/10.13995/j.cnki.111802/ts.019602 Search in Google Scholar

36. Zhang C.Y., Pan D.D.(2016). Study on the culture and extraction conditions of the protease produced by Lactobacillus helveticus. Food Science, 27(10),416-419. Search in Google Scholar

37. Zhang C., Chen H., Lei N., Du G.L., Li X.Y., Liu Z.M., Cao J.L. (2021). Optimization of fermentation conditions for cell envelope proteinase produced by Lactobacillus plantarum LP69. Acta Universitatis Cibiniensis Series E: FOOD TECHNOLOGY. 25(1), 135-142. DOI: 10.2478/aucft-2021-001310.2478/aucft-2021-0013 Search in Google Scholar

38. Zhang,X.Y.(2021). Study on the milk protein hydrolysis characteristics of Lactobacillus helveticus and its cell wall protease. Jiangnan University, DOI: 10.27169/d.cnki.gwqgu.2021.001005 Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo