Uneingeschränkter Zugang

Water Footprint of main crops in Austria / Wasser-Fußabdruck wichtiger Nutzpflanzen in Österreich


Zitieren

Allen, R.G., Pereira, L.S., Raes, D. and M. Smith (1998): Crop evapotranspiration-Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.AllenR.G.PereiraL.S.RaesD.SmithM.1998Crop evapotranspiration-Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56Food and Agriculture Organization of the United Nations (FAO)Rome, ItalySearch in Google Scholar

Amarasinghe, U.A. and V. Smakhtin (2014): Water productivity and water footprint: Misguided concepts or useful tools in water management and policy? Water International 39, 1000–1017.AmarasingheU.A.SmakhtinV.2014Water productivity and water footprint: Misguided concepts or useful tools in water management and policy?Water International391000101710.1080/02508060.2015.986631Search in Google Scholar

BFW (2007): Digitale Bodenkarte von Österreich. Bundesforschungs- und Ausbildungszentrum für Wald, Naturgefahren und Landschaft (BFW), Vienna, Austria.BFW2007Digitale Bodenkarte von ÖsterreichBundesforschungs- und Ausbildungszentrum für Wald, Naturgefahren und Landschaft (BFW)Vienna, AustriaSearch in Google Scholar

Blum, A. (2009): Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Research 112, 119–123.BlumA.2009Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stressField Crops Research11211912310.1016/j.fcr.2009.03.009Search in Google Scholar

Chapagain, A.K. and A.Y. Hoekstra (2008): The global component of freshwater demand and supply: An assessment of virtual water flows between nations as a result of trade in agricultural and industrial products. Water International 33, 19–32.ChapagainA.K.HoekstraA.Y.2008The global component of freshwater demand and supply: An assessment of virtual water flows between nations as a result of trade in agricultural and industrial productsWater International33193210.1080/02508060801927812Search in Google Scholar

Chukalla, A., Krol, M. and A. Hoekstra (2015): Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching. Hydrology and Earth System Sciences 19, 4877–4891.ChukallaA.KrolM.HoekstraA.2015Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulchingHydrology and Earth System Sciences194877489110.5194/hess-19-4877-2015Search in Google Scholar

Eitzinger, J., Trnka, M., Semerádová, D., Thaler, S., Svobodová, E., Hlavinka, P., Siska, B., Takác, J., Malatinská, L., Nováková, M., Dubrovsky, M. and Z. Zalud (2013): Regional climate change impacts on agricultural crop production in Central and Eastern Europe - Hotspots, regional differences and common trends. Journal of Agricultural Science 151, 787–812.EitzingerJ.TrnkaM.SemerádováD.ThalerS.SvobodováE.HlavinkaP.SiskaB.TakácJ.MalatinskáL.NovákováM.DubrovskyM.ZaludZ.2013Regional climate change impacts on agricultural crop production in Central and Eastern Europe - Hotspots, regional differences and common trendsJournal of Agricultural Science15178781210.1017/S0021859612000767Search in Google Scholar

Falkenmark, M. and J. Rockström (2006): The new blue and green water paradigm: Breaking new ground for water resources planning and management. Journal of Water Resources Planning and Management 3, 129–132.FalkenmarkM.RockströmJ.2006The new blue and green water paradigm: Breaking new ground for water resources planning and managementJournal of Water Resources Planning and Management312913210.1061/(ASCE)0733-9496(2006)132:3(129)Search in Google Scholar

Fereres, E. and M. Soriano (2006): Deficit irrigation for reducing agricultural water use. Journal of Experimental Botany 58, 147–159.FereresE.SorianoM.2006Deficit irrigation for reducing agricultural water useJournal of Experimental Botany5814715910.1093/jxb/erl16517088360Search in Google Scholar

Foley, J.A., Ramankutty, N., Brauman, K.A., Cassidy, E.S., Gerber, J.S., Johnston, M., Mueller, N.D., O’Connell, C., Ray, D.K., West, P.C., Balzer, C., Bennett, E.M., Carpenter, S.R., Hill, J., Monfreda, C., Polasky, S., Rockstrom, J., Sheehan, J., Siebert, S., Tilman, D. and D.P.M. Zaks (2011): Solutions for a cultivated planet. Nature 478, 337–342.FoleyJ.A.RamankuttyN.BraumanK.A.CassidyE.S.GerberJ.S.JohnstonM.MuellerN.D.O’ConnellC.RayD.K.WestP.C.BalzerC.BennettE.M.CarpenterS.R.HillJ.MonfredaC.PolaskyS.RockstromJ.SheehanJ.SiebertS.TilmanD.ZaksD.P.M.2011Solutions for a cultivated planetNature47833734210.1038/nature1045221993620Search in Google Scholar

García-Vila, M., Fereres, E., Mateos, L., Orgaz, F. and P. Steduto (2009): Deficit irrigation optimization of cotton with AquaCrop. Agronomy Journal 101, 477–487.García-VilaM.FereresE.MateosL.OrgazF.StedutoP.2009Deficit irrigation optimization of cotton with AquaCropAgronomy Journal10147748710.2134/agronj2008.0179sSearch in Google Scholar

Heng, L.K., Hsiao, T.C., Evett, S., Howell, T. and P. Steduto (2009): Validating the FAO AquaCrop model for irrigated and water deficient field maize. Agronomy Journal 101, 488–498.HengL.K.HsiaoT.C.EvettS.HowellT.StedutoP.2009Validating the FAO AquaCrop model for irrigated and water deficient field maizeAgronomy Journal10148849810.2134/agronj2008.0029xsSearch in Google Scholar

Hoekstra, A.Y. (2003): Virtual water trade. In: Hoekstra, A.Y. (Ed.): Proceedings of the International Expert Meeting on Virtual Water Trade, IHE Delft. Value of Water Research Report Series N°12, Delft, The Netherlands.HoekstraA.Y.2003Virtual water tradeHoekstraA.Y.Proceedings of the International Expert Meeting on Virtual Water Trade, IHE DelftValue of Water Research Report Series N°12, DelftThe NetherlandsSearch in Google Scholar

Hoekstra, A.Y. and P.Q. Hung (2005): Globalisation of water resources: International virtual water flows in relation to crop trade. Global Environmental Change 15, 45–56.HoekstraA.Y.HungP.Q.2005Globalisation of water resources: International virtual water flows in relation to crop tradeGlobal Environmental Change15455610.1016/j.gloenvcha.2004.06.004Search in Google Scholar

Hoekstra, A.Y. and A.K. Chapagain (2008). Globalization of Water. Blackwell, Oxford, UK.HoekstraA.Y.ChapagainA.K.2008Globalization of WaterBlackwellOxford, UKSearch in Google Scholar

Hoekstra, A.Y., Gerbens-Leenes, W. and T.H. Van der Meer (2009): Water footprint accounting, impact assessment, and life-cycle assessment. Proceedings of the National Academy of Sciences 106, E114.HoekstraA.Y.Gerbens-LeenesW.Van der MeerT.H.2009Water footprint accounting, impact assessment, and life-cycle assessmentProceedings of the National Academy of Sciences106E11410.1073/pnas.0909948106276132019834986Search in Google Scholar

Hoekstra, A.Y., Chapagain, A.K., Aldaya, M.M. and M.M. Mekonnen (2011): The Water Footprint Assessment Manual: Setting the Global Standard. Earthscan, London, UK.HoekstraA.Y.ChapagainA.K.AldayaM.M.MekonnenM.M.2011The Water Footprint Assessment Manual: Setting the Global StandardEarthscanLondon, UKSearch in Google Scholar

Hoekstra, A.Y. and M.M. Mekonnen (2012): The water footprint of humanity. Proceedings of the National Academy of Sciences of the United States of America 109, 3232–3237.HoekstraA.Y.MekonnenM.M.2012The water footprint of humanityProceedings of the National Academy of Sciences of the United States of America1093232323710.1073/pnas.1109936109329531622331890Search in Google Scholar

Hoekstra, A.Y. (2013): The Water Footprint of Modern Consumer Society. Routledge, London, UK.HoekstraA.Y.2013The Water Footprint of Modern Consumer SocietyRoutledge, London, UK10.4324/9780203126585Search in Google Scholar

Hoekstra, A.Y. and T.O. Wiedmann (2014): Humanity’s unsustainable environmental footprint. Science 344, 1114–1117.HoekstraA.Y.WiedmannT.O.2014Humanity’s unsustainable environmental footprintScience3441114111710.1126/science.124836524904155Search in Google Scholar

Hsiao, T.C., Heng, L., Steduto, P., Rojas-Lara, B., Raes, D. and E. Fereres (2009): AquaCrop - The FAO Crop Model to Simulate Yield Response to Water: III. Parameterization and Testing for Maize. Agronomy Journal 101, 448–459.HsiaoT.C.HengL.StedutoP.Rojas-LaraB.RaesD.FereresE.2009AquaCrop - The FAO Crop Model to Simulate Yield Response to Water: III. Parameterization and Testing for MaizeAgronomy Journal10144845910.2134/agronj2008.0218sSearch in Google Scholar

Mebane, V.J., Day, R.L., Hamlett, J.M., Watson, J.E. and G.W. Roth (2013): Validating the FAO AquaCrop Model for Rainfed Maize in Pennsylvania. Agronomy Journal 105, 419–427.MebaneV.J.DayR.L.HamlettJ.M.WatsonJ.E.RothG.W.2013Validating the FAO AquaCrop Model for Rainfed Maize in PennsylvaniaAgronomy Journal10541942710.2134/agronj2012.0337Search in Google Scholar

Mekonnen, M.M. and A.Y. Hoekstra (2014): Water footprint benchmarks for crop production: A first global assessment. Ecological Indicators 46, 214–223.MekonnenM.M.HoekstraA.Y.2014Water footprint benchmarks for crop production: A first global assessmentEcological Indicators4621422310.1016/j.ecolind.2014.06.013Search in Google Scholar

Molden, D., Oweis, T., Steduto, P., Bindraban, P., Hanjra, M.A. and J. Kijne (2010): Improving agricultural water productivity: Between optimism and caution. Agricultural Water Management 97, 528–535.MoldenD.OweisT.StedutoP.BindrabanP.HanjraM.A.KijneJ.2010Improving agricultural water productivity: Between optimism and cautionAgricultural Water Management9752853510.1016/j.agwat.2009.03.023Search in Google Scholar

Perry, C., Steduto, P., Allen, R.G. and C.M. Burt (2009): Increasing productivity in irrigated agriculture: Agronomic constraints and hydrological realities. Agricultural Water Management 96, 1517–1524.PerryC.StedutoP.AllenR.G.BurtC.M.2009Increasing productivity in irrigated agriculture: Agronomic constraints and hydrological realitiesAgricultural Water Management961517152410.1016/j.agwat.2009.05.005Search in Google Scholar

Raes, D., Steduto, P., Hsiao, T.C. and E. Fereres (2009): AquaCrop - The FAO Crop Model to Simulate Yield Response to Water: II. Main Algorithms and Software Description. Agronomy Journal 101, 438–447.RaesD.StedutoP.HsiaoT.C.FereresE.2009AquaCrop - The FAO Crop Model to Simulate Yield Response to Water: II. Main Algorithms and Software DescriptionAgronomy Journal10143844710.2134/agronj2008.0140sSearch in Google Scholar

Raes, D., Steduto, P., Hsiao, T.C. and E. Fereres (2011): Reference Manual AquaCrop plug-in program. Food and Agriculture Organization of the United Nations (FAO), Land and Water Division, Rome, Italy.RaesD.StedutoP.HsiaoT.C.FereresE.2011Reference Manual AquaCrop plug-in programFood and Agriculture Organization of the United Nations (FAO)Land and Water DivisionRome, ItalySearch in Google Scholar

Raes, D. (2012): Evapotranspiration from a reference surface. Reference Manual Version 3.2. Food and Agriculture Organization of the United Nations (FAO), Land and Water Division, Rome, Italy. http://www.fao.org/nr/water/docs/ReferenceManualV32.pdf. Accessed on 12 December 2016.RaesD.2012Evapotranspiration from a reference surfaceReference Manual Version 3.2Food and Agriculture Organization of the United Nations (FAO), Land and Water DivisionRome, Italyhttp://www.fao.org/nr/water/docs/ReferenceManualV32.pdfAccessed on 12 December 2016Search in Google Scholar

Raes, D., Steduto, P., Hsiao, T.C. and E. Fereres (2012): Chapter 3 Calculation procedures – AquaCrop, Version 4.0. Food and Agriculture Organization of the United Nations (FAO), Land and Water Division, Rome, Italy.RaesD.StedutoP.HsiaoT.C.FereresE.2012Chapter 3 Calculation procedures – AquaCrop, Version 4.0Food and Agriculture Organization of the United Nations (FAO), Land and Water DivisionRome, ItalySearch in Google Scholar

Ritchie, J. (1972): Model for predicting evaporation from a row crop with incomplete cover. Water Resources Research 8, 1204–1213.RitchieJ.1972Model for predicting evaporation from a row crop with incomplete coverWater Resources Research81204121310.1029/WR008i005p01204Search in Google Scholar

Steduto, P., Hsiao, T.C. and E. Fereres (2007): On the conservative behavior of biomass water productivity. Irrigation Science 25, 189–207.StedutoP.HsiaoT.C.FereresE.2007On the conservative behavior of biomass water productivityIrrigation Science2518920710.1007/s00271-007-0064-1Search in Google Scholar

Steduto, P., Raes, D., Hsiao, T.C., Fereres, E., Heng, L., Izzi, G. and J. Hoogeveen (2008): AquaCrop: a new model for crop prediction under water deficit conditions. In: López-Francos, A. (Ed.): Drought management: scientific and technological innovations. Zaragoza, CIHEAM, 285–292.StedutoP.RaesD.HsiaoT.C.FereresE.HengL.IzziG.HoogeveenJ.2008AquaCrop: a new model for crop prediction under water deficit conditionsLópez-FrancosA.Drought management: scientific and technological innovationsZaragoza, CIHEAM285292Search in Google Scholar

Steduto, P., Hsiao, T.C., Raes, D. and E. Fereres (2009a): AquaCrop - The FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles. Agronomy Journal 101, 426–437.StedutoP.HsiaoT.C.RaesD.FereresE.2009aAquaCrop - The FAO Crop Model to Simulate Yield Response to Water: Concepts I. and Underlying PrinciplesAgronomy Journal10142643710.2134/agronj2008.0139sSearch in Google Scholar

Steduto, P., Raes, D., Hsiao, T.C., Fereres, E., Heng, L.K., Howell, T.A., Evett, S.R., Rojas-Lara, B.A., Farahani, H.J., Izzi, G., Oweis, T.Y., Wani, S.P., Hoogeveen, J. and S. Geerts (2009b): Concepts and Applications of AquaCrop: The FAO Crop Water Productivity Model. In: Cao, W., White, J. and E. Wang (Eds.): Crop Modeling and Decision Support. Springer, Berlin, Germany, pp. 175–191.StedutoP.RaesD.HsiaoT.C.FereresE.HengL.K.HowellT.A.EvettS.R.Rojas-LaraB.A.FarahaniH.J.IzziG.OweisT.Y.WaniS.P.HoogeveenJ.GeertsS.2009bConcepts and Applications of AquaCrop: The FAO Crop Water Productivity ModelCaoW.WhiteJ.WangE.Crop Modeling and Decision SupportSpringerBerlin, Germany17519110.1007/978-3-642-01132-0_19Search in Google Scholar

Thaler, S., Eitzinger, J., Trnka M. and M. Dubrovsky (2012): Impacts of climate change and alternative adaptation options on winter wheat yield and water productivity in a dry climate in Central Europe. Journal of Agricultural Science 150, 537–555.ThalerS.EitzingerJ.TrnkaM.DubrovskyM.2012Impacts of climate change and alternative adaptation options on winter wheat yield and water productivity in a dry climate in Central EuropeJournal of Agricultural Science15053755510.1017/S0021859612000093Search in Google Scholar

Zhuo, L., Mekonnen, M.M., Hoekstra, A.Y. and Y. Wada (2016a): Inter- and intra-annual variation of water footprint of crops and blue water scarcity in the Yellow River basin (1961–2009). Advances in Water Resources 87, 29–41.ZhuoL.MekonnenM.M.HoekstraA.Y.WadaY.2016aInter- and intra-annual variation of water footprint of crops and blue water scarcity in the Yellow River basin (1961–2009)Advances in Water Resources87294110.1016/j.advwatres.2015.11.002Search in Google Scholar

Zhuo, L., Mekonnen, M.M. and A.Y. Hoekstra (2016b): The effect of inter-annual variability of consumption, production, trade and climate on crop-related green and blue water footprints and interregional virtual water trade: A study for China (1978–2008). Water Research 94, 73–85.ZhuoL.MekonnenM.M.HoekstraA.Y.2016bThe effect of inter-annual variability of consumption, production, trade and climate on crop-related green and blue water footprints and interregional virtual water trade: A study for China (1978–2008)Water Research94738510.1016/j.watres.2016.02.03726938494Search in Google Scholar

eISSN:
0006-5471
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Ökologie, andere