Open Access

Microbiota: A Missing Link in The Pathogenesis of Chronic Lung Inflammatory Diseases


Cite

Acosta N, Whelan FJ, Somayaji R, Poonja A, Surette MG, Rabin HR, Parkins MD. The evolving cystic fibrosis microbiome: a comparative cohort study spanning 16 years. Ann Am Thorac Soc. 2017 Aug;14(8):1288–1297. https://doi.org/10.1513/AnnalsATS.201609-668OCAcostaNWhelanFJSomayajiRPoonjaASuretteMGRabinHRParkinsMD. The evolving cystic fibrosis microbiome: a comparative cohort study spanning 16 years. Ann Am Thorac Soc.2017Aug;14(8):12881297. https://doi.org/10.1513/AnnalsATS.201609-668OC10.1513/AnnalsATS.201609-668OC28541746Search in Google Scholar

Allais L, Kerckhof FM, Verschuere S, Bracke KR, De Smet R, Laukens D, Van den Abbeele P, De Vos M, Boon N, Brusselle GG, et al. Chronic cigarette smoke exposure induces microbial and inflammatory shifts and mucin changes in the murine gut. Environ Microbiol. 2016 May;18(5):1352–1363. https://doi.org/10.1111/1462-2920.12934AllaisLKerckhofFMVerschuereSBrackeKRDe SmetRLaukensDVan den AbbeelePDe VosMBoonNBrusselleGG. Chronic cigarette smoke exposure induces microbial and inflammatory shifts and mucin changes in the murine gut. Environ Microbiol.2016May;18(5):13521363. https://doi.org/10.1111/1462-2920.1293410.1111/1462-2920.1293426033517Search in Google Scholar

Barcik W, Boutin RCT, Sokolowska M, Finlay BB. The role of lung and gut microbiota in the pathology of asthma. Immunity. 2020 Feb 18;52(2):241–255. https://doi.org/10.1016/j.immuni.2020.01.007BarcikWBoutinRCTSokolowskaMFinlayBB. The role of lung and gut microbiota in the pathology of asthma. Immunity.2020Feb 18;52(2):241255. https://doi.org/10.1016/j.immuni.2020.01.00710.1016/j.immuni.2020.01.007712838932075727Search in Google Scholar

Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014 Mar;157(1):121–141. https://doi.org/10.1016/j.cell.2014.03.011BelkaidYHandTW. Role of the microbiota in immunity and inflammation. Cell.2014Mar;157(1):121141. https://doi.org/10.1016/j.cell.2014.03.01110.1016/j.cell.2014.03.011405676524679531Search in Google Scholar

Belkaid Y, Harrison OJ. Homeostatic immunity and the microbiota. Immunity. 2017 Apr;46(4):562–576. https://doi.org/10.1016/j.immuni.2017.04.008BelkaidYHarrisonOJ. Homeostatic immunity and the microbiota. Immunity.2017Apr;46(4):562576. https://doi.org/10.1016/j.immuni.2017.04.00810.1016/j.immuni.2017.04.008560487128423337Search in Google Scholar

Berg G, Rybakova D, Fischer D, Cernava T, Vergès MCC, Charles T, Chen X, Cocolin L, Eversole K, Corral GH, et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome. 2020 Dec;8(1):103. https://doi.org/10.1186/s40168-020-00875-0BergGRybakovaDFischerDCernavaTVergèsMCCCharlesTChenXCocolinLEversoleKCorralGH. Microbiome definition re-visited: old concepts and new challenges. Microbiome.2020Dec;8(1):103. https://doi.org/10.1186/s40168-020-00875-010.1186/s40168-020-00875-0732952332605663Search in Google Scholar

Burgel P-R, Contoli M, López-Campos JL. Acute exacerbations of the pulmonary diseases. Sheffield (UK): European Respiratory Society; 2017. https://doi.org/10.1183/2312508X.erm7717BurgelP-RContoliMLópez-CamposJL. Acute exacerbations of the pulmonary diseases.Sheffield (UK): European Respiratory Society; 2017. https://doi.org/10.1183/2312508X.erm771710.1183/2312508X.erm7717Search in Google Scholar

Cait A, Hughes MR, Antignano F, Cait J, Dimitriu PA, Maas KR, Reynolds LA, Hacker L, Mohr J, Finlay BB, et al. Microbiome-driven allergic lung inflammation is ameliorated by short-chain fatty acids. Mucosal Immunol. 2018 May;11(3):785–795. https://doi.org/10.1038/mi.2017.75CaitAHughesMRAntignanoFCaitJDimitriuPAMaasKRReynoldsLAHackerLMohrJFinlayBB. Microbiome-driven allergic lung inflammation is ameliorated by short-chain fatty acids. Mucosal Immunol.2018May;11(3):785795. https://doi.org/10.1038/mi.2017.7510.1038/mi.2017.7529067994Search in Google Scholar

Carmody LA, Zhao J, Schloss PD, Petrosino JF, Murray S, Young VB, Li JZ, LiPuma JJ. Changes in cystic fibrosis airway microbiota at pulmonary exacerbation. Ann Am Thorac Soc. 2013 Jun; 10(3):179–187. https://doi.org/10.1513/AnnalsATS.201211-107OCCarmodyLAZhaoJSchlossPDPetrosinoJFMurraySYoungVBLiJZLiPumaJJ. Changes in cystic fibrosis airway microbiota at pulmonary exacerbation. Ann Am Thorac Soc.2013Jun; 10(3):179187. https://doi.org/10.1513/AnnalsATS.201211-107OC10.1513/AnnalsATS.201211-107OC396090523802813Search in Google Scholar

Castro-Nallar E, Shen Y, Freishtat RJ, Pérez-Losada M, Manimaran S, Liu G, Johnson WE, Crandall KA. Integrating microbial and host transcriptomics to characterize asthma-associated microbial communities. BMC Med Genomics. 2015 Dec;8(1):50. https://doi.org/10.1186/s12920-015-0121-1Castro-NallarEShenYFreishtatRJPérez-LosadaMManimaranSLiuGJohnsonWECrandallKA. Integrating microbial and host transcriptomics to characterize asthma-associated microbial communities. BMC Med Genomics.2015Dec;8(1):50. https://doi.org/10.1186/s12920-015-0121-110.1186/s12920-015-0121-1453778126277095Search in Google Scholar

Chung KF. Airway microbial dysbiosis in asthmatic patients: A target for prevention and treatment? J Allergy Clin Immunol. 2017 Apr; 139(4):1071–1081. https://doi.org/10.1016/j.jaci.2017.02.004ChungKF. Airway microbial dysbiosis in asthmatic patients: A target for prevention and treatment?J Allergy Clin Immunol.2017Apr; 139(4):10711081. https://doi.org/10.1016/j.jaci.2017.02.00410.1016/j.jaci.2017.02.004Search in Google Scholar

Cox MJ, Allgaier M, Taylor B, Baek MS, Huang YJ, Daly RA, Karaoz U, Andersen GL, Brown R, Fujimura KE, et al. Airway microbiota and pathogen abundance in age-stratified cystic fibrosis patients. PLoS One. 2010 Jun 23;5(6):e11044. https://doi.org/10.1371/journal.pone.0011044CoxMJAllgaierMTaylorBBaekMSHuangYJDalyRAKaraozUAndersenGLBrownRFujimuraKE. Airway microbiota and pathogen abundance in age-stratified cystic fibrosis patients. PLoS One.2010Jun 23;5(6):e11044. https://doi.org/10.1371/journal.pone.001104410.1371/journal.pone.0011044Search in Google Scholar

Cribbs SK, Beck JM. Microbiome in the pathogenesis of cystic fibrosis and lung transplant-related disease. Transl Res. 2017 Jan; 179:84–96. https://doi.org/10.1016/j.trsl.2016.07.022CribbsSKBeckJM. Microbiome in the pathogenesis of cystic fibrosis and lung transplant-related disease. Transl Res.2017Jan; 179:8496. https://doi.org/10.1016/j.trsl.2016.07.02210.1016/j.trsl.2016.07.022Search in Google Scholar

Cuthbertson L, Walker AW, Oliver AE, Rogers GB, Rivett DW, Hampton TH, Ashare A, Elborn JS, De Soyza A, Carroll MP, et al. Lung function and microbiota diversity in cystic fibrosis. Microbiome. 2020 Dec;8(1):45. https://doi.org/10.1186/s40168-020-00810-3CuthbertsonLWalkerAWOliverAERogersGBRivettDWHamptonTHAshareAElbornJSDe SoyzaACarrollMP. Lung function and microbiota diversity in cystic fibrosis. Microbiome.2020Dec;8(1):45. https://doi.org/10.1186/s40168-020-00810-310.1186/s40168-020-00810-3Search in Google Scholar

Denner DR, Sangwan N, Becker JB, Hogarth DK, Oldham J, Castillo J, Sperling AI, Solway J, Naureckas ET, Gilbert JA, et al. Corticosteroid therapy and airflow obstruction influence the bronchial microbiome, which is distinct from that of bronchoalveolar lavage in asthmatic airways. J Allergy Clin Immunol. 2016 May; 137(5):1398–1405.e3. https://doi.org/10.1016/j.jaci.2015.10.017DennerDRSangwanNBeckerJBHogarthDKOldhamJCastilloJSperlingAISolwayJNaureckasETGilbertJA. Corticosteroid therapy and airflow obstruction influence the bronchial microbiome, which is distinct from that of bronchoalveolar lavage in asthmatic airways. J Allergy Clin Immunol.2016May; 137(5):13981405.e3. https://doi.org/10.1016/j.jaci.2015.10.01710.1016/j.jaci.2015.10.017Search in Google Scholar

Dickson RP, Erb-Downward JR, Huffnagle GB. The role of the bacterial microbiome in lung disease. Expert Rev Respir Med. 2013 Jun;7(3):245–257. https://doi.org/10.1586/ers.13.24DicksonRPErb-DownwardJRHuffnagleGB. The role of the bacterial microbiome in lung disease. Expert Rev Respir Med.2013Jun;7(3):245257. https://doi.org/10.1586/ers.13.2410.1586/ers.13.24Search in Google Scholar

Dickson RP, Martinez FJ, Huffnagle GB. The role of the microbiome in exacerbations of chronic lung diseases. Lancet. 2014 Aug; 384(9944): 691–702. https://doi.org/10.1016/S0140-6736(14)61136-3DicksonRPMartinezFJHuffnagleGB. The role of the microbiome in exacerbations of chronic lung diseases. Lancet.2014Aug; 384(9944): 691702. https://doi.org/10.1016/S0140-6736(14)61136-310.1016/S0140-6736(14)61136-3Search in Google Scholar

Dima E, Kyriakoudi A, Kaponi M, Vasileiadis I, Stamou P, Koutsoukou A, Koulouris NG, Rovina N. The lung microbiome dynamics between stability and exacerbation in chronic obstructive pulmonary disease (COPD): Current perspectives. Respir Med. 2019 Oct;157:1–6. https://doi.org/10.1016/j.rmed.2019.08.012DimaEKyriakoudiAKaponiMVasileiadisIStamouPKoutsoukouAKoulourisNGRovinaN. The lung microbiome dynamics between stability and exacerbation in chronic obstructive pulmonary disease (COPD): Current perspectives. Respir Med.2019Oct;157:16. https://doi.org/10.1016/j.rmed.2019.08.01210.1016/j.rmed.2019.08.01231450162Search in Google Scholar

Ditz B, Christenson S, Rossen J, Brightling C, Kerstjens HAM, van den Berge M, Faiz A. Sputum microbiome profiling in COPD: beyond singular pathogen detection. Thorax. 2020 Apr;75(4):338–344. https://doi.org/10.1136/thoraxjnl-2019-214168DitzBChristensonSRossenJBrightlingCKerstjensHAMvan den BergeMFaizA. Sputum microbiome profiling in COPD: beyond singular pathogen detection. Thorax.2020Apr;75(4):338344. https://doi.org/10.1136/thoraxjnl-2019-21416810.1136/thoraxjnl-2019-214168723145431996401Search in Google Scholar

Durack J, Lynch SV, Nariya S, Bhakta NR, Beigelman A, Castro M, Dyer AM, Israel E, Kraft M, Martin RJ, et al.; National Heart, Lung and Blood Institute’s “AsthmaNet”. Features of the bronchial bacterial microbiome associated with atopy, asthma, and responsiveness to inhaled corticosteroid treatment. J Allergy Clin Immunol. 2017 Jul;140(1):63–75. https://doi.org/10.1016/j.jaci.2016.08.055DurackJLynchSVNariyaSBhaktaNRBeigelmanACastroMDyerAMIsraelEKraftMMartinRJ; National Heart, Lung and Blood Institute’s “AsthmaNet”. Features of the bronchial bacterial microbiome associated with atopy, asthma, and responsiveness to inhaled corticosteroid treatment. J Allergy Clin Immunol.2017Jul;140(1):6375. https://doi.org/10.1016/j.jaci.2016.08.05510.1016/j.jaci.2016.08.055550282727838347Search in Google Scholar

Einarsson GG, Comer DM, McIlreavey L, Parkhill J, Ennis M, Tunney MM, Elborn JS. Community dynamics and the lower airway microbiota in stable chronic obstructive pulmonary disease, smokers and healthy non-smokers. Thorax. 2016 Sep;71(9):795–803. https://doi.org/10.1136/thoraxjnl-2015-207235EinarssonGGComerDMMcIlreaveyLParkhillJEnnisMTunneyMMElbornJS. Community dynamics and the lower airway microbiota in stable chronic obstructive pulmonary disease, smokers and healthy non-smokers. Thorax.2016Sep;71(9):795803. https://doi.org/10.1136/thoraxjnl-2015-20723510.1136/thoraxjnl-2015-20723527146202Search in Google Scholar

Françoise A, Héry-Arnaud G. The microbiome in cystic fibrosis pulmonary disease. Genes (Basel). 2020 May 11;11(5):536. https://doi.org/10.3390/genes11050536FrançoiseAHéry-ArnaudG. The microbiome in cystic fibrosis pulmonary disease. Genes (Basel).2020May 11;11(5):536. https://doi.org/10.3390/genes1105053610.3390/genes11050536728844332403302Search in Google Scholar

Gillanders LJ, Elborn JS, Gilpin DF, Schneiders T, Tunney MM. The airway microbiome in cystic fibrosis: challenges for therapy. Therapy. 2011 Nov;8(6):645–660. https://doi.org/10.2217/thy.11.81GillandersLJElbornJSGilpinDFSchneidersTTunneyMM. The airway microbiome in cystic fibrosis: challenges for therapy. Therapy.2011Nov;8(6):645660. https://doi.org/10.2217/thy.11.8110.2217/thy.11.81Search in Google Scholar

Goto T. Airway microbiota as a modulator of lung cancer. Int J Mol Sci. 2020 Apr 26;21(9):3044. https://doi.org/10.3390/ijms21093044GotoT. Airway microbiota as a modulator of lung cancer. Int J Mol Sci.2020Apr 26;21(9):3044. https://doi.org/10.3390/ijms2109304410.3390/ijms21093044724646932357415Search in Google Scholar

Haldar K, George L, Wang Z, Mistry V, Ramsheh MY, Free RC, John C, Reeve NF, Miller BE, Tal-Singer R, et al. The sputum microbiome is distinct between COPD and health, independent of smoking history. Respir Res. 2020 Dec;21(1):183. https://doi.org/10.1186/s12931-020-01448-3HaldarKGeorgeLWangZMistryVRamshehMYFreeRCJohnCReeveNFMillerBETal-SingerR. The sputum microbiome is distinct between COPD and health, independent of smoking history. Respir Res.2020Dec;21(1):183. https://doi.org/10.1186/s12931-020-01448-310.1186/s12931-020-01448-3736243632664956Search in Google Scholar

Hoffman L, Surette M. What to expect when you’re expectorating: cystic fibrosis exacerbations and microbiota. Ann Am Thorac Soc. 2013 Jun;10(3):249–250. https://doi.org/10.1513/AnnalsATS.201304-086EDHoffmanLSuretteM. What to expect when you’re expectorating: cystic fibrosis exacerbations and microbiota. Ann Am Thorac Soc.2013Jun;10(3):249250. https://doi.org/10.1513/AnnalsATS.201304-086ED10.1513/AnnalsATS.201304-086ED23802823Search in Google Scholar

Huang YJ, Erb-Downward JR, Dickson RP, Curtis JL, Huffnagle GB, Han MK. Understanding the role of the microbiome in chronic obstructive pulmonary disease: principles, challenges, and future directions. Transl Res. 2017 Jan;179:71–83. https://doi.org/10.1016/j.trsl.2016.06.007HuangYJErb-DownwardJRDicksonRPCurtisJLHuffnagleGBHanMK. Understanding the role of the microbiome in chronic obstructive pulmonary disease: principles, challenges, and future directions. Transl Res.2017Jan;179:7183. https://doi.org/10.1016/j.trsl.2016.06.00710.1016/j.trsl.2016.06.007516497627392936Search in Google Scholar

Huang YJ, Nariya S, Harris JM, Lynch SV, Choy DF, Arron JR, Boushey H. The airway microbiome in patients with severe asthma: associations with disease features and severity. J Allergy Clin Immunol. 2015 Oct;136(4):874–884. https://doi.org/10.1016/j.jaci.2015.05.044HuangYJNariyaSHarrisJMLynchSVChoyDFArronJRBousheyH. The airway microbiome in patients with severe asthma: associations with disease features and severity. J Allergy Clin Immunol.2015Oct;136(4):874884. https://doi.org/10.1016/j.jaci.2015.05.04410.1016/j.jaci.2015.05.044460042926220531Search in Google Scholar

Huffnagle GB, Dickson RP, Lukacs NW. The respiratory tract microbiome and lung inflammation: a two-way street. Mucosal Immunol. 2017 Mar;10(2):299–306. https://doi.org/10.1038/mi.2016.108HuffnagleGBDicksonRPLukacsNW. The respiratory tract microbiome and lung inflammation: a two-way street. Mucosal Immunol.2017Mar;10(2):299306. https://doi.org/10.1038/mi.2016.10810.1038/mi.2016.108576554127966551Search in Google Scholar

Kovaleva OV, Romashin D, Zborovskaya IB, Davydov MM, Shogenov MS, Gratchev A. Human lung microbiome on the way to cancer. J Immunol Res. 2019 Jul 29;2019:1394191. https://doi.org/10.1155/2019/1394191KovalevaOVRomashinDZborovskayaIBDavydovMMShogenovMSGratchevA. Human lung microbiome on the way to cancer. J Immunol Res.2019Jul 29;2019:1394191. https://doi.org/10.1155/2019/139419110.1155/2019/1394191671078631485458Search in Google Scholar

Kozik AJ, Huang YJ. The microbiome in asthma: Role in pathogenesis, phenotype, and response to treatment. Ann Allergy Asthma Immunol. 2019 Mar;122(3):270–275. https://doi.org/10.1016/j.anai.2018.12.005KozikAJHuangYJ. The microbiome in asthma: Role in pathogenesis, phenotype, and response to treatment. Ann Allergy Asthma Immunol.2019Mar;122(3):270275. https://doi.org/10.1016/j.anai.2018.12.00510.1016/j.anai.2018.12.005638940830552986Search in Google Scholar

LiPuma JJ. The changing microbial epidemiology in cystic fibrosis. Clin Microbiol Rev. 2010 Apr;23(2):299–323. https://doi.org/10.1128/CMR.00068-09LiPumaJJ. The changing microbial epidemiology in cystic fibrosis. Clin Microbiol Rev.2010Apr;23(2):299323. https://doi.org/10.1128/CMR.00068-0910.1128/CMR.00068-09286336820375354Search in Google Scholar

Lloyd CM, Marsland BJ. Lung homeostasis: influence of age, microbes and the immune system. Immunity. 2017 Apr;46(4):549–561. https://doi.org/10.1016/j.immuni.2017.04.005LloydCMMarslandBJ. Lung homeostasis: influence of age, microbes and the immune system. Immunity.2017Apr;46(4):549561. https://doi.org/10.1016/j.immuni.2017.04.00510.1016/j.immuni.2017.04.00528423336Search in Google Scholar

Loverdos K, Bellos G, Kokolatou L, Vasileiadis I, Giamarellos E, Pecchiari M, Koulouris N, Koutsoukou A, Rovina N. Lung microbiome in asthma: Current perspective. J Clin Med. 2019 Nov 14; 8(11):1967. https://doi.org/10.3390/jcm8111967LoverdosKBellosGKokolatouLVasileiadisIGiamarellosEPecchiariMKoulourisNKoutsoukouARovinaN. Lung microbiome in asthma: Current perspective. J Clin Med.2019Nov 14; 8(11):1967. https://doi.org/10.3390/jcm811196710.3390/jcm8111967691269931739446Search in Google Scholar

Malinowska M, Tokarz-Deptuła B, Deptuła W. [Mikrobiom człowieka] (in Polish). Postepy Mikrobiol. 2017;56(1):33–42.MalinowskaMTokarz-DeptułaBDeptułaW. [Mikrobiom człowieka] (in Polish). Postepy Mikrobiol.2017;56(1):3342.Search in Google Scholar

Martinez FJ, Erb-Downward JR, Huffnagle GB. Significance of the microbiome in chronic obstructive pulmonary disease. Ann Am Thorac Soc. 2013 Dec;10 Supplement:S170–S179. https://doi.org/10.1513/AnnalsATS.201306-204AWMartinezFJErb-DownwardJRHuffnagleGB. Significance of the microbiome in chronic obstructive pulmonary disease. Ann Am Thorac Soc.2013Dec;10 Supplement:S170S179. https://doi.org/10.1513/AnnalsATS.201306-204AW10.1513/AnnalsATS.201306-204AW547818324313769Search in Google Scholar

Moffatt MF, Cookson WO. The lung microbiome in health and disease. Clin Med (Lond). 2017 Dec;17(6):525–529. https://doi.org/10.7861/clinmedicine.17-6-525MoffattMFCooksonWO. The lung microbiome in health and disease. Clin Med (Lond).2017Dec;17(6):525529. https://doi.org/10.7861/clinmedicine.17-6-52510.7861/clinmedicine.17-6-525629768529196353Search in Google Scholar

Noval Rivas M, Crother TR, Arditi M. The microbiome in asthma. Curr Opin Pediatr. 2016 Dec;28(6):764–771. https://doi.org/10.1097/MOP.0000000000000419Noval RivasMCrotherTRArditiM. The microbiome in asthma. Curr Opin Pediatr.2016Dec;28(6):764771. https://doi.org/10.1097/MOP.000000000000041910.1097/MOP.0000000000000419524101527606957Search in Google Scholar

O’Dwyer DN, Dickson RP, Moore BB. The lung microbiome, immunity and the pathogenesis of chronic lung disease. J Immunol. 2016 Jun 15;196(12):4839–4847. https://doi.org/10.4049/jimmunol.1600279O’DwyerDNDicksonRPMooreBB. The lung microbiome, immunity and the pathogenesis of chronic lung disease. J Immunol.2016Jun 15;196(12):48394847. https://doi.org/10.4049/jimmunol.160027910.4049/jimmunol.1600279489433527260767Search in Google Scholar

Ogunrinola GA, Oyewale JO, Oshamika OO, Olasehinde GI. The human microbiome and its impacts on health. Int J Microbiol. 2020 Jun 12;2020:1–7. https://doi.org/10.1155/2020/8045646OgunrinolaGAOyewaleJOOshamikaOOOlasehindeGI. The human microbiome and its impacts on health. Int J Microbiol.2020Jun 12;2020:17. https://doi.org/10.1155/2020/804564610.1155/2020/8045646730606832612660Search in Google Scholar

Papadopoulos NG, Christodoulou I, Rohde G, Agache I, Almqvist C, Bruno A, Bonini S, Bont L, Bossios A, Bousquet J, et al. Viruses and bacteria in acute asthma exacerbations – A GA2LEN--DARE* systematic review. Allergy. 2011 Apr;66(4): 458–468. https://doi.org/10.1111/j.1398-9995.2010.02505.xPapadopoulosNGChristodoulouIRohdeGAgacheIAlmqvistCBrunoABoniniSBontLBossiosABousquetJ. Viruses and bacteria in acute asthma exacerbations – A GA2LEN--DARE* systematic review. Allergy.2011Apr;66(4): 458468. https://doi.org/10.1111/j.1398-9995.2010.02505.x10.1111/j.1398-9995.2010.02505.x715947421087215Search in Google Scholar

Paudel KR, Dharwal V, Patel VK, Galvao I, Wadhwa R, Malyla V, Shen SS, Budden KF, Hansbro NG, Vaughan A, et al. Role of lung microbiome in innate immune response associated with chronic lung diseases. Frontiers in Medicine. 2020 Sep 18;7:554. https://doi.org/10.3389/fmed.2020.00554PaudelKRDharwalVPatelVKGalvaoIWadhwaRMalylaVShenSSBuddenKFHansbroNGVaughanA. Role of lung microbiome in innate immune response associated with chronic lung diseases. Frontiers in Medicine.2020Sep 18;7:554. https://doi.org/10.3389/fmed.2020.0055410.3389/fmed.2020.00554753018633043031Search in Google Scholar

Pulvirenti G, Parisi GF, Giallongo A, Papale M, Manti S, Savasta S, Licari A, Marseglia GL, Leonardi S. Lower airway microbiota. Front Pediatr. 2019 Sep 27;7:393. https://doi.org/10.3389/fped.2019.00393PulvirentiGParisiGFGiallongoAPapaleMMantiSSavastaSLicariAMarsegliaGLLeonardiS. Lower airway microbiota. Front Pediatr.2019Sep 27;7:393. https://doi.org/10.3389/fped.2019.0039310.3389/fped.2019.00393677660131612122Search in Google Scholar

Ramírez-Labrada AG, Isla D, Artal A, Arias M, Rezusta A, Pardo J, Gálvez EM. The influence of lung microbiota on lung carcinogenesis, immunity and immunotherapy. Trends Cancer. 2020 Feb;6(2):86–97. https://doi.org/10.1016/j.trecan.2019.12.007Ramírez-LabradaAGIslaDArtalAAriasMRezustaAPardoJGálvezEM. The influence of lung microbiota on lung carcinogenesis, immunity and immunotherapy. Trends Cancer.2020Feb;6(2):8697. https://doi.org/10.1016/j.trecan.2019.12.00710.1016/j.trecan.2019.12.00732061309Search in Google Scholar

Rogers GB, Bruce KD, Hoffman LR. How can the cystic fibrosis respiratory microbiome influence our clinical decision-making? Curr Opin Pulm Med. 2017 Nov;23(6):536–543. https://doi.org/10.1097/MCP.0000000000000419RogersGBBruceKDHoffmanLR. How can the cystic fibrosis respiratory microbiome influence our clinical decision-making?Curr Opin Pulm Med.2017Nov;23(6):536543. https://doi.org/10.1097/MCP.000000000000041910.1097/MCP.0000000000000419563994128786882Search in Google Scholar

Samuelson DR, Welsh DA, Shellito JE. Regulation of lung immunity and host defense by the intestinal microbiota. Front Microbiol. 2015 Oct 7;6:1085. https://doi.org/10.3389/fmicb.2015.01085SamuelsonDRWelshDAShellitoJE. Regulation of lung immunity and host defense by the intestinal microbiota. Front Microbiol.2015Oct 7;6:1085. https://doi.org/10.3389/fmicb.2015.0108510.3389/fmicb.2015.01085459583926500629Search in Google Scholar

Simpson JL, Daly J, Baines KJ, Yang IA, Upham JW, Reynolds PN, Hodge S, James AL, Hugenholtz P, Willner D, et al. Airway dysbiosis: Haemophilus influenzae and Tropheryma in poorly controlled asthma. Eur Respir J. 2016 Mar;47(3):792–800. https://doi.org/10.1183/13993003.00405-2015SimpsonJLDalyJBainesKJYangIAUphamJWReynoldsPNHodgeSJamesALHugenholtzPWillnerD. Airway dysbiosis: Haemophilus influenzae and Tropheryma in poorly controlled asthma. Eur Respir J.2016Mar;47(3):792800. https://doi.org/10.1183/13993003.00405-201510.1183/13993003.00405-201526647445Search in Google Scholar

Sommariva M, Le Noci V, Bianchi F, Camelliti S, Balsari A, Tagliabue E, Sfondrini L. The lung microbiota: role in maintaining pulmonary immune homeostasis and its implications in cancer development and therapy. Cell Mol Life Sci. 2020 Jul;77(14):2739–2749. https://doi.org/10.1007/s00018-020-03452-8SommarivaMLe NociVBianchiFCamellitiSBalsariATagliabueESfondriniL. The lung microbiota: role in maintaining pulmonary immune homeostasis and its implications in cancer development and therapy. Cell Mol Life Sci.2020Jul;77(14):27392749. https://doi.org/10.1007/s00018-020-03452-810.1007/s00018-020-03452-8732682431974656Search in Google Scholar

Surette MG. The cystic fibrosis lung microbiome. Ann Am Thorac Soc. 2014 Jan;11 Suppl 1:S61–S65. https://doi.org/10.1513/AnnalsATS.201306-159MGSuretteMG. The cystic fibrosis lung microbiome. Ann Am Thorac Soc.2014Jan;11Suppl 1:S61S65. https://doi.org/10.1513/AnnalsATS.201306-159MG10.1513/AnnalsATS.201306-159MG24437409Search in Google Scholar

Sverrild A, Kiilerich P, Brejnrod A, Pedersen R, Porsbjerg C, Bergqvist A, Erjefält JS, Kristiansen K, Backer V. Eosinophilic airway inflammation in asthmatic patients is associated with an altered airway microbiome. J Allergy Clin Immunol. 2017 Aug;140(2): 407–417.e11. https://doi.org/10.1016/j.jaci.2016.10.046SverrildAKiilerichPBrejnrodAPedersenRPorsbjergCBergqvistAErjefältJSKristiansenKBackerV. Eosinophilic airway inflammation in asthmatic patients is associated with an altered airway microbiome. J Allergy Clin Immunol.2017Aug;140(2): 407417.e11.https://doi.org/10.1016/j.jaci.2016.10.04610.1016/j.jaci.2016.10.04628042058Search in Google Scholar

Taylor SL, Leong LEX, Choo JM, Wesselingh S, Yang IA, Upham JW, Reynolds PN, Hodge S, James AL, Jenkins C, et al. Inflammatory phenotypes in patients with severe asthma are associated with distinct airway microbiology. J Allergy Clin Immunol. 2018 Jan;141(1):94–103.e15. https://doi.org/10.1016/j.jaci.2017.03.044TaylorSLLeongLEXChooJMWesselinghSYangIAUphamJWReynoldsPNHodgeSJamesALJenkinsC. Inflammatory phenotypes in patients with severe asthma are associated with distinct airway microbiology. J Allergy Clin Immunol.2018Jan;141(1):94103.e15. https://doi.org/10.1016/j.jaci.2017.03.04410.1016/j.jaci.2017.03.04428479329Search in Google Scholar

Toraldo DM, Conte L. Influence of the lung microbiota dysbiosis in chronic obstructive pulmonary disease exacerbations: the controversial use of corticosteroid and antibiotic treatments and the role of eosinophils as a disease marker. J Clin Med Res. 2019;11(10):667–675. https://doi.org/10.14740/jocmr3875ToraldoDMConteL. Influence of the lung microbiota dysbiosis in chronic obstructive pulmonary disease exacerbations: the controversial use of corticosteroid and antibiotic treatments and the role of eosinophils as a disease marker. J Clin Med Res.2019;11(10):667675. https://doi.org/10.14740/jocmr387510.14740/jocmr3875678528131636780Search in Google Scholar

Wang J, Li F, Tian Z. Role of microbiota on lung homeostasis and diseases. Sci China Life Sci. 2017 Dec;60(12):1407–1415. https://doi.org/10.1007/s11427-017-9151-1WangJLiFTianZ. Role of microbiota on lung homeostasis and diseases. Sci China Life Sci.2017Dec;60(12):14071415. https://doi.org/10.1007/s11427-017-9151-110.1007/s11427-017-9151-1708913929019144Search in Google Scholar

Wang Z, Bafadhel M, Haldar K, Spivak A, Mayhew D, Miller BE, Tal-Singer R, Johnston SL, Ramsheh MY, Barer MR, et al. Lung microbiome dynamics in COPD exacerbations. Eur Respir J. 2016 Apr;47(4):1082–1092. https://doi.org/10.1183/13993003.01406-2015WangZBafadhelMHaldarKSpivakAMayhewDMillerBETal-SingerRJohnstonSLRamshehMYBarerMR. Lung microbiome dynamics in COPD exacerbations. Eur Respir J.2016Apr;47(4):10821092. https://doi.org/10.1183/13993003.01406-201510.1183/13993003.01406-201526917613Search in Google Scholar

Xu N, Wang L, Li C, Ding C, Li C, Fan W, Cheng C, Gu B. Microbiota dysbiosis in lung cancer: evidence of association and potential mechanisms. Transl Lung Cancer Res. 2020 Aug;9(4):1554–1568. https://doi.org/10.21037/tlcr-20-156XuNWangLLiCDingCLiCFanWChengCGuB. Microbiota dysbiosis in lung cancer: evidence of association and potential mechanisms. Transl Lung Cancer Res.2020Aug;9(4):15541568. https://doi.org/10.21037/tlcr-20-15610.21037/tlcr-20-156748160432953527Search in Google Scholar

Yang X, Feng H, Zhan X, Zhang C, Cui R, Zhong L, Ying S, Chen Z. Early-life vancomycin treatment promotes airway inflammation and impairs microbiome homeostasis. Aging (Albany NY). 2019 Apr 13; 11(7):2071–2081. https://doi.org/10.18632/aging.101901YangXFengHZhanXZhangCCuiRZhongLYingSChenZ. Early-life vancomycin treatment promotes airway inflammation and impairs microbiome homeostasis. Aging (Albany NY).2019Apr 13; 11(7):20712081. https://doi.org/10.18632/aging.10190110.18632/aging.101901650388130981206Search in Google Scholar

eISSN:
2544-4646
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Microbiology and Virology