Cite

1. Romani, A., et al., HPLC-DAD/MS Characterization of Flavonoids and Hydroxycinnamic Derivatives in Turnip Tops (Brassica rapa L. Subsp. sylvestris L.). Journal of Agricultural and Food Chemistry, 2006. 54(4): 342–1346.10.1021/jf052629x16478258Search in Google Scholar

2. Tiwari, B.K., et al., Application of natural antimicrobials for food preservation. J Agric Food Chem, 2009. 57(14): 5987–6000.10.1021/jf900668n19548681Search in Google Scholar

3. Cowan, M.M., Plant products as antimicrobial agents. Clinical microbiology reviews, 1999. 12(4): 564–582.10.1128/CMR.12.4.5648892510515903Search in Google Scholar

4. Chávez-González, M.L., R. Rodríguez-Herrera, and C.N. Aguilar, Chapter 11 - Essential Oils: A Natural Alternative to Combat Antibiotics Resistance, in Antibiotic Resistance, K. Kon and M. Rai, Editors. 2016, Academic Press. 227–237.10.1016/B978-0-12-803642-6.00011-3Search in Google Scholar

5. Hintz, T., K.K. Matthews, and R. Di, The Use of Plant Antimicrobial Compounds for Food Preservation. Biomed Res Int, 2015. 2015: 246–264.10.1155/2015/246264461976826539472Search in Google Scholar

6. Feng, S., et al., Phytochemical contents and anti-oxidant capacities of different parts of two sugar-cane (Saccharum officinarum L.) cultivars. Food Chemistry, 2014. 151: 452–458.10.1016/j.foodchem.2013.11.05724423556Search in Google Scholar

7. Fukai, K., T. Ishigami, and Y. Kara, Antibacterial Activity of Tea Polyphenols against Phytopathogenic Bacteria. Agricultural and Biological Chemistry, 1991. 55(7): 1895–1897.10.1271/bbb1961.55.1895Search in Google Scholar

8. Park, B.J., et al., Antifungal susceptibility of epigallocatechin 3-O-gallate (EGCg) on clinical isolates of pathogenic yeasts. Biochemical and Biophysical Research Communications, 2006. 347(2): 401–405.10.1016/j.bbrc.2006.06.03716831406Search in Google Scholar

9. Taguri, T., T. Tanaka, and I. Kouno, Antimicrobial Activity of 10 Different Plant Polyphenols against Bacteria Causing Food-Borne Disease. Biological and Pharmaceutical Bulletin, 2004. 27(12): 1965–1969.10.1248/bpb.27.196515577214Search in Google Scholar

10. Thakur, D., et al., Antimicrobial Activities of Tocklai Vegetative Tea Clones. Indian Journal of Microbiology, 2011. 51(4): 450–455.10.1007/s12088-011-0190-6320994323024406Search in Google Scholar

11. Stover, M.G. and R.R. Watson, Polyphenols in Foods and Dietary Supplements: Role in Veterinary Medicine and Animal Health, in Polyphenols in Human Health and Disease. 2013. 3–7.10.1016/B978-0-12-398456-2.00001-3Search in Google Scholar

12. Weisburger, J.H., Prevention of coronary heart disease and cancer by tea, a review. Environmental Health and Preventive Medicine, 2003. 7(6): 283–288.10.1007/BF02908887Search in Google Scholar

13. Scalbert, A., I.T. Johnson, and M. Saltmarsh, Polyphenols: antioxidants and beyond. The American Journal of Clinical Nutrition, 2005. 81(1): 215S–217S.10.1093/ajcn/81.1.215SSearch in Google Scholar

14. Pandey, A. and S. Kumar, Perspective on plant products as antimicrobial agents: a review. Pharmacologia, 2013. 4(7): 469–480.10.5567/pharmacologia.2013.469.480Search in Google Scholar

15. Clark, A.M., Natural products as a resource for new drugs. Pharmaceutical research, 1996. 13(8): 1133–1141.10.1023/A:1016091631721Search in Google Scholar

16. Lukačišinová, M. and T. Bollenbach, Toward a quantitative understanding of antibiotic resistance evolution. Current Opinion in Biotechnology, 2017. 46: 90–97.10.1016/j.copbio.2017.02.013Search in Google Scholar

17. Tallapragada, P. and R. Dikshit, Chapter 11 -Microbial Production of Secondary Metabolites as Food Ingredients, in Microbial Production of Food Ingredients and Additives, A.M. Holban and A.M. Grumezescu, Editors. 2017, Academic Press. 317–345.10.1016/B978-0-12-811520-6.00011-8Search in Google Scholar

18. Wang, H., G.J. Provan, and K. Helliwell, Tea flavonoids: their functions, utilisation and analysis. Trends in Food Science & Technology, 2000. 11(4-5): 152–160.10.1016/S0924-2244(00)00061-3Search in Google Scholar

19. Zhao, Y., et al., The antibiotic activity and mechanisms of sugarcane (Saccharum officinarum L.) bagasse extract against food-borne pathogens. Food chemistry, 2015. 185: 112–118.10.1016/j.foodchem.2015.03.12025952848Search in Google Scholar

20. Hussain, Z., et al., Investigation of the antimicrobial activity of the extract of the leaves of sugar cane (Sacharaum officinarum). Journal of Pharmacy Research 2011. 4(11): 4292–4293.Search in Google Scholar

21. Kaur, R., S.K. Uppal, and P. Sharma, Antioxidant and Antibacterial Activities of Sugarcane Bagasse Lignin and Chemically Modified Lignins. Sugar tech, 2017. 19(6): 675–680.10.1007/s12355-017-0513-ySearch in Google Scholar

22. Ellis, T.P., et al., Postprandial insulin and glucose levels are reduced in healthy subjects when a standardised breakfast meal is supplemented with a filtered sugarcane molasses concentrate. Eur J Nutr, 2016. 55(8): 2365–2376.10.1007/s00394-015-1043-626410392Search in Google Scholar

23. Wright, A.G., T.P. Ellis, and L.L. Ilag, Filtered molasses concentrate from sugar cane: natural functional ingredient effective in lowering the glycaemic index and insulin response of high carbohydrate foods. Plant Foods Hum Nutr, 2014. 69(4): 310–6.10.1007/s11130-014-0446-525373842Search in Google Scholar

24. Biesalski, H.K., Nutrition meets the microbiome: micronutrients and the microbiota. Ann N Y Acad Sci, 2016. 1372(1): 53–64.10.1111/nyas.1314527362360Search in Google Scholar

25. Kessler, R., et al., Diarrhea, bacteremia and multiorgan dysfunction due to an extraintestinal pathogenic Escherichia coli strain with enteropathogenic E. coli genes. Pathog Dis, 2015. 73(8): p. ftv076.10.1093/femspd/ftv076462217226410828Search in Google Scholar

26. Spaulding, C.N., et al., Precision antimicrobial therapeutics: the path of least resistance? NPJ Biofilms Microbiomes, 2018. 4: 4.10.1038/s41522-018-0048-3582915929507749Search in Google Scholar

27. Fey, P.D. and M.E. Olson, Current concepts in biofilm formation of Staphylococcus epidermidis. Future Microbiol, 2010. 5(6): 917–33.10.2217/fmb.10.56290304620521936Search in Google Scholar

28. Otto, M., Staphylococcus epidermidis - the “accidental” pathogen”. Nature Reviews Microbiology, 2010. 7(8): 555–567.10.1038/nrmicro2182280762519609257Search in Google Scholar

29. Bek-Thomsen, M., H.B. Lomholt, and M. Kilian, Acne is not associated with yet-uncultured bacteria. J Clin Microbiol, 2008. 46(10): 3355–60.10.1128/JCM.00799-08256612618716234Search in Google Scholar

30. Byrd, A.L., Y. Belkaid, and J.A. Segre, The human skin microbiome. Nat Rev Microbiol, 2018. 16(3): 143–155.10.1038/nrmicro.2017.15729332945Search in Google Scholar

31. Tzellos, T., et al., Treating acne with antibiotic-resistant bacterial colonization. Expert Opin Pharmacother, 2011. 12(8): 1233–47.10.1517/14656566.2011.55319221355786Search in Google Scholar

32. Hudson, A.J., G.D. Glaister, and H.J. Wieden, The Emergency Medical Service Microbiome. Appl Environ Microbiol, 2017.10.1128/AEM.02098-17581294829222105Search in Google Scholar

33. Schlecht, L.M., et al., Systemic Staphylococcus aureus infection mediated by Candida albicans hyphal invasion of mucosal tissue. Microbiology, 2015. 161(Pt 1): 168–181.10.1099/mic.0.083485-0427478525332378Search in Google Scholar

34. Nicolas, G.G. and M.C. Lavoie, [Streptococcus mutans and oral streptococci in dental plaque]. Can J Microbiol, 2011. 57(1): 1–20.10.1139/W10-095Search in Google Scholar

35. Prasanth, M., Antimicrobial efficacy of different toothpastes and mouthrinses: an in vitro study. Dent Res J (Isfahan), 2011. 8(2): 85–94.Search in Google Scholar

36. Ji, J., et al., Antioxidant and Anti-Diabetic Functions of a Polyphenol-Rich Sugarcane Extract. J Am Coll Nutr, 2019: 1–11.Search in Google Scholar

37. Shang, R.F., et al., Synthesis and biological evaluation of new pleuromutilin derivatives as antibacterial agents. Molecules, 2014. 19(11): 19050–65.10.3390/molecules191119050627145525415471Search in Google Scholar

38. Akers, M.D., Exploring, Analysing and Interpreting Data with Minitab 18 (1st ed.) United Kingdom. Compass Publishing, 2018.Search in Google Scholar

39. Ahmed, S., et al., Honey as a Potential Natural Antioxidant Medicine: An Insight into Its Molecular Mechanisms of Action. Oxid Med Cell Longev, 2018. 2018: 8367846.10.1155/2018/8367846582281929492183Search in Google Scholar

40. Apostolopoulos, V., et al., Let’s Go Bananas! Gren Bananas and their Health Benefits. Pril (Makedon Akad Nauk Umet Odd Med Nauki), 2017. 38(2): 147–151.10.1515/prilozi-2017-003328991769Search in Google Scholar

41. Harris, J.C., et al., Antimicrobial properties of Allium sativum (garlic). Appl Microbiol Biotechnol, 2001. 57(3): 282–6.10.1007/s00253010072211759674Search in Google Scholar

42. Kalemba, D. and A. Kunicka, Antibacterial and antifungal properties of essential oils. Curr Med Chem, 2003. 10(10): 813–29.10.2174/092986703345771912678685Search in Google Scholar

43. Ma, D.S.L., et al., Resveratrol-Potential Antibacterial Agent against Foodborne Pathogens. Front Pharmacol, 2018. 9: 102.10.3389/fphar.2018.00102582606229515440Search in Google Scholar

44. Nabavi, S.F., et al., Antibacterial Effects of Cinnamon: From Farm to Food, Cosmetic and Pharmaceutical Industries. Nutrients, 2015. 7(9): 7729–48.10.3390/nu7095359458655426378575Search in Google Scholar

45. Saeed, M., et al., The Promising Pharmacological Effects and Therapeutic/Medicinal applications of Punica Granatum L. (Pomegranate) as a Functional Food in Humans and Animals. Recent Pat Inflamm Allergy Drug Discov, 2018.10.2174/1872213X1266618022115471329473532Search in Google Scholar

46. Noormandi, A. and F. Dabaghzadeh, Effects of green tea on Escherichia coli as a uropathogen. Journal of Traditional and Complementary Medicine, 2015. 5(1): 15–20.10.1016/j.jtcme.2014.10.005448817826151004Search in Google Scholar

47. Passat, D.N., Interactions of black and green tea water extracts with antibiotics activity in local urinary isolated Escherichia coli. J. AlNahrain Univ., 2012. 15: 134–142.10.22401/JNUS.15.3.19Search in Google Scholar

48. Wu, D., et al., Inhibitory effects on bacterial growth and beta-ketoacyl-ACP reductase by different species of maple leaf extracts and tannic acid. Phytother Res, 2010. 24 Suppl 1: S35–41.10.1002/ptr.287319444866Search in Google Scholar

eISSN:
1857-8985
ISSN:
1857-9345
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Medicine, Basic Medical Science, History and Ethics of Medicine, Clinical Medicine, other, Social Sciences, Education