Open Access

Quantifying Muscle Recovery: A Scoping Review of Existing Markers and Measurement Approaches

, , ,  and   
Jul 05, 2025

Cite
Download Cover

Owens D.J., Twist C., Cobley J.N., Howatson G., Close G.L. (2019). Exercise-induced muscle damage: What is it, what causes it and what are the nutritional solutions? European Journal of Sport Science 19(1), 71-85. DOI: 10.1080/17461391.2018.1505957 Search in Google Scholar

Dupuy O., Douzi W., Theurot D., Bosquet L., Dugué B. (2018). An evidence-based approach for choosing post-exercise recovery techniques to reduce markers of muscle damage, soreness, fatigue, and inflammation: A systematic review with meta-analysis. Frontiers in Physiology 9, 312968. DOI: 10.3389/fphys.2018.00403 Search in Google Scholar

Peake J.M., Neubauer O., Gatta P.A.D., Nosaka K. (2017). Muscle damage and inflammation during recovery from exercise. Journal of Applied Physiology 122(3), 559-570. DOI: 10.1152/japplphysiol.00971.2016 Search in Google Scholar

Clarkson P.M., Hubal M.J. (2002). Exercise-induced muscle damage in humans. American Journal of Physical Medicine & Rehabilitation 81(11), 52-69. DOI: 10.1097/00002060-200211001-00007 Search in Google Scholar

Tee J.C., Bosch A.N., Lambert M.I. (2007). Metabolic consequences of exercise-induced muscle damage. Sports Medicine 37(10), 827-836. DOI: 10.2165/00007256-200737100-00001 Search in Google Scholar

Brancaccio P., Lippi G., Maffulli N. (2010). Biochemical markers of muscular damage. Clinical Chemistry and Laboratory Medicine 48(6), 757-767. DOI: 10.1515/CCLM.2010.179 Search in Google Scholar

Chalchat E., Gaston A.F., Charlot K., Peñailillo L., Valdés O. et al. (2022). Appropriateness of indirect markers of muscle damage following lower limbs eccentric-biased exercises: A systematic review with meta-analysis. Plos One 17(7), e0271233. DOI: 10.1371/journal.pone.0271233 Search in Google Scholar

Baird M.F., Graham S.M., Baker J.S., Bickerstaff G.F. (2012). Creatine-kinase- and exercise-related muscle damage implications for muscle performance and recovery. Journal of Nutrition and Metabolism 2012, 960363. DOI: 10.1155/2012/960363 Search in Google Scholar

Elustondo P.A., White A.E., Hughes M.E., Brebner K., Pavlov E., Kane D.A. (2013). Physical and functional association of lactate dehydrogenase (LDH) with skeletal muscle mitochondria. Journal of Biological Chemistry 288(35), 25309-25317. DOI: 10.1074/jbc.M113.476648 Search in Google Scholar

Peake J.M., Suzuki K., Hordern M., Wilson G., Nosaka K., Coombes J.S. (2005). Plasma cytokine changes in relation to exercise intensity and muscle damage. European Journal of Applied Physiology 95(5-6), 514-521. DOI: 10.1007/S00421-005-0035-2 Search in Google Scholar

Pillen S. (2010). Skeletal muscle ultrasound. European Journal of Translational Myology 20(4), 145-156. DOI: 10.4081/ejtm.2010.1812 Search in Google Scholar

Pezzotta G., Querques G., Pecorelli A., Nani R., Sironi S. (2017). MRI detection of soleus muscle injuries in professional football players. Skeletal Radiology 46(11), 1513-1520. DOI: 10.1007/s00256-017-2729-z Search in Google Scholar

Nowak L., Reyes P.F. (2008). Muscle biopsy: A diagnostic tool in muscle diseases. Journal of Histotechnology 31(3), 101-108. DOI: 10.1179/his.2008.31.3.101 Search in Google Scholar

Tricco A.C., Lillie E., Zarin W., O’Brien K.K., Colquhoun H. et al. (2018). PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Annals of Internal Medicine 169(7), 467-473. DOI: 10.7326/M18-0850 Search in Google Scholar

Peters M.D., Godfrey C., McInerney P., Munn Z., Tricco A.C., Khalil H. (2024). Scoping reviews. In E. Aromataris, C. Lockwood, K. Porritt, B. Pilla, Z. Jordan (eds), JBI Manual for Evidence Synthesis. DOI: 10.46658/JBIMES-24-09 Search in Google Scholar

Cooper S., Cant, R., Kelly, M., Levett-Jones, T., McKenna et al. (2019). An evidence-based checklist for improving scoping review quality. Clinical Nursing Research 30(3), 230-240. DOI:10.1177/1054773819846024 Search in Google Scholar

Wilson L.J., Dimitriou L., Hills F.A., Gondek M.B., Cock-burn E. (2019). Whole body cryotherapy, cold water immersion, or a placebo following resistance exercise: a case of mind over matter? European Journal of Applied Physiology 119(1), 135-147. DOI: 10.1007/S00421-018-4008-7 Search in Google Scholar

Medeiros F.V.A., Bottaro M., Martins W.R., Ribeiro D.L.F., Marinho E.B.A. et al. (2020). The effects of one session of roller massage on recovery from exercise-induced muscle damage: A randomized controlled trial. Journal of Exercise Science & Fitness 18(3), 148-154. DOI: 10.1016/j.jesf.2020.05.002 Search in Google Scholar

Hüttel M., Golditz T., Mayer I., Heiss R., Lutter C. et al. (2020). Effects of pre- and post-exercise cold-water immersion therapy on passive muscle stiffness. Sportverletzung--Sportschaden 34(2), 72-78. DOI: 10.1055/a-0854-8302 Search in Google Scholar

Wigernaes I., Hostmark A.T., Kierulf P., Stromme S.B. (2000). Active recovery reduces the decrease in circulating white blood cells after exercise. International Journal of Sports Medicine 21(8), 608-612. DOI: 10.1055/s-2000-8478 Search in Google Scholar

Daab W., Bouzid M.A., Lajri M., Bouchiba M., Saafi M.A., Rebai H. (2021). Chronic beetroot juice supplementation accelerates recovery kinetics following simulated match play in soccer players. Journal of the American College of Nutrition 40(1), 61-69. DOI: 10.1080/07315724.2020.1735571 Search in Google Scholar

Thompson D., Nicholas C.W., Williams C. (1999). Muscular soreness following prolonged intermittent high-intensity shuttle running. Journal of Sports Sciences 17(5), 387-395. DOI: 10.1080/026404199365902 Search in Google Scholar

Lamb K.L., Ranchordas M.K., Johnson E.K., Denning J., Downing F., Lynn A. (2019). No effect of tart cherry juice or pomegranate juice on recovery from exercise-induced muscle damage in non-resistance trained men. Nutrients 11(7), 1593. DOI: 10.3390/nu11071593 Search in Google Scholar

Waskiw-Ford M., Hannaian S., Duncan J., Kato H., Sawan S.A. et al. (2020). Leucine-enriched essential amino acids improve recovery from post-exercise muscle damage independent of increases in integrated myofibrillar protein synthesis in young men. Nutrients 12(4), 1061. DOI: 10.3390/nu12041061 Search in Google Scholar

Howatson G., Hoad M., Goodall S., Tallent J., Bell P.G., French D.N. (2012). Exercise-induced muscle damage is reduced in resistance-trained males by branched chain amino acids: A randomized, double-blind, placebo controlled study. Journal of the International Society of Sports Nutrition 9(1), 1-7. DOI: 10.1186/1550-2783-9-20 Search in Google Scholar

Adamczyk J.G., Krasowska I., Boguszewski D., Reaburn P. (2016). The use of thermal imaging to assess the effectiveness of ice massage and cold-water immersion as methods for supporting post-exercise recovery. Journal of Thermal Biology 60, 20-25. DOI: 10.1016/j.jtherbio.2016.05.006 Search in Google Scholar

Chang W.G., Chen C.Y., Li W.F., Chou C.C., Liao Y.H. (2020). Traditional Chinese acupressure massage ameliorates systemic inflammatory responses and joint mobility limitation after acute repeated jumping exercise. Explore 16(1), 26-34. DOI: 10.1016/j.explore.2019.08.003 Search in Google Scholar

Cipryan L. (2017). IL-6, antioxidant capacity and muscle damage markers following high-intensity interval training protocols. Journal of Human Kinetics 56(1), 139-148. DOI: 10.1515/hukin-2017-0031 Search in Google Scholar

Crane J.D., Ogborn D.I., Cupido C., Melov S., Hubbard A. et al. (2012). Massage therapy attenuates inflammatory signaling after exercise-induced muscle damage. Science Translational Medicine 4(119), 119ra13. DOI: 10.1126/scitranslmed.3002882 Search in Google Scholar

Missau E., Teixeira A. de O., Franco O.S., Martins C.N., Paulitsch F. da S. et al. (2018). Cold water immersion and inflammatory response after resistance exercises. Revista Brasileira de Medicina Do Esporte 24(5), 372-376. DOI: 10.1590/1517-869220182405182913 Search in Google Scholar

Mackay K., González C., Zbinden-Foncea H., Peñailillo L. (2019). Effects of oral contraceptive use on female sexual salivary hormones and indirect markers of muscle damage following eccentric cycling in women. European Journal of Applied Physiology 119(11-12), 2733-2744. DOI: 10.1007/s00421-019-04254-y Search in Google Scholar

O’Fallon K.S., Kaushik D., Michniak-Kohn B., Dunne C.P., Zambraski E.J., Clarkson P.M. (2012). Effects of quercetin supplementation on markers of muscle damage and inflammation after eccentric exercise. International Journal of Sport Nutrition and Exercise Metabolism 22(6), 430-437. DOI: 10.1123/ijsnem.22.6.430 Search in Google Scholar

Nasser N., Zorgati H., Chtourou H., Guimard A. (2023). Cold water immersion after a soccer match: Does the placebo effect occur? Frontiers in Physiology 14, 1062398. DOI: 10.3389/fphys.2023.1062398 Search in Google Scholar

Kusmierczyk J., Wiecek M., Bawelski M., Szygula Z., Rafa--Zablocka K. et al. (2024). Pre-exercise cryotherapy reduces myoglobin and creatine kinase levels after eccentric muscle stress in young women. Frontiers in Physiology 15, 1413949. DOI: 10.3389/fphys.2024.1413949 Search in Google Scholar

Hemmati H., Alkasasbeh W.J., Hemmatinafar M., Salesi M., Pirmohammadi S. et al. (2024). Effect of a honey-sweetened beverage on muscle soreness and recovery of performance after exercise-induced muscle damage in strength-trained females. Frontiers in Physiology 15, 1426872. DOI: 10.3389/fphys.2024.1426872 Search in Google Scholar

Guilhem G., Hug F., Couturier A., Regnault S., Bournat L. et al. (2013). Effects of air-pulsed cryotherapy on neuromuscular recovery subsequent to exercise-induced muscle damage. The American Journal of Sports Medicine 41(8), 1942-1951. DOI: 10.1177/0363546513490648 Search in Google Scholar

Krueger M., Costello J.T., Achtzehn S., Dittmar K.H., Mester J. (2019). Whole-body cryotherapy (−110°C) following high--intensity intermittent exercise does not alter hormonal, inflammatory or muscle damage biomarkers in trained males. Cytokine 113, 277-284. DOI: 10.1016/j.cyto.2018.07.018 Search in Google Scholar

Krueger M., Costello J.T., Stenzel M., Mester J., Wahl P. (2020). The physiological effects of daily cold-water immersion on 5-day tournament performance in international standard youth field-hockey players. European Journal of Applied Physiology 120(1), 295-305. DOI: 10.1007/s00421-019-04274-8 Search in Google Scholar

Martin-Arrowsmith P.W., Lov J., Dai J., Morais J.A., Churchward-Venne T.A. (2020). Ketone monoester supplementation does not expedite the recovery of indices of muscle damage after eccentric exercise. Frontiers in Nutrition 7, 607299. DOI: 10.3389/fnut.2020.607299 Search in Google Scholar

Matos F., Neves E.B., Rosa C., Reis V.M., Saavedra F. et al. (2018). Effect of cold-water immersion on elbow flexors muscle thickness after resistance training. Journal of Strength and Conditioning Research 32(3), 756-763. DOI: 10.1519/JSC.0000000000002322 Search in Google Scholar

Montgomery P.G., Pyne D.B., Cox A.J., Hopkins W.G., Minahan C.L., Hunt P. H. (2008). Muscle damage, inflammation, and recovery interventions during a 3-day basketball tournament. European Journal of Sport Science 8(5), 241-250. DOI: 10.1080/17461390802251844 Search in Google Scholar

Nicol L.M., Rowlands D.S., Fazakerly R., Kellett J. (2015). Curcumin supplementation likely attenuates delayed onset muscle soreness (DOMS). European Journal of Applied Physiology 115(8), 1769-1777. DOI: 10.1007/s00421-015-3152-6 Search in Google Scholar

Bell P.G., Stevenson E., Davison G.W., Howatson G. (2016). The effects of montmorency tart cherry concentrate supplementation on recovery following prolonged, intermittent exercise. Nutrients 8(7), 441. DOI: 10.3390/nu8070441 Search in Google Scholar

Zhang X., Li X., Wu Z., Li X., Zhang G. (2024). Deciphering recovery paradigms: Foam rolling’s impact on DOMS and lactate dynamics in elite volleyball athletes. Heliyon 10(7), e29180. DOI: 10.1016/j.heliyon.2024.e29180 Search in Google Scholar

Nie J., Tong T.K., George K., Fu F.H., Lin H., Shi Q. (2011). Resting and post-exercise serum biomarkers of cardiac and skeletal muscle damage in adolescent runners. Scandinavian Journal of Medicine & Science in Sports 21(5), 625-629. DOI: 10.1111/j.1600-0838.2010.01096.x Search in Google Scholar

James C., Dugan C.W., Boyd C., Fournier P.A., Arthur P.G. (2024). Temporal tracking of cysteine 34 oxidation of plasma albumin as a biomarker of muscle damage following a bout of eccentric exercise. European Journal of Applied Physiology 124(9), 2639-2650. DOI: 10.1007/s00421-024-05488-1 Search in Google Scholar

Crameri R.M., Aagaard P., Qvortrup K., Langberg H., Olesen J., Kjær M. (2007). Myofibre damage in human skeletal muscle: effects of electrical stimulation versus voluntary contraction. The Journal of Physiology 583(1), 365-380. DOI: 10.1113/jphysiol.2007.128827 Search in Google Scholar

Su Q.S., Tian Y., Zhang J.G., Zhang H. (2008). Effects of allicin supplementation on plasma markers of exercise--induced muscle damage, IL-6 and antioxidant capacity. European Journal of Applied Physiology 103(3), 275-283. DOI: 10.1007/s00421-008-0699-5 Search in Google Scholar

Tseng C.Y., Lee J.P., Tsai Y.S., Lee S. Da, Kao C.L. et al. (2013). Topical cooling (Icing) delays recovery from eccentric exercise-induced muscle damage. Journal of Strength and Conditioning Research 27(5), 1354-1361. DOI: 10.1519/JSC.0b013e318267a22c Search in Google Scholar

Zhou Y., Li Y., Wang R. (2011). Evaluation of exercise-induced muscle damage by surface electromyography. Journal of Electromyography and Kinesiology 21(2), 356-362. DOI: 10.1016/j.jelekin.2010.09.009 Search in Google Scholar

Hunter A.M., Galloway S.D.R., Smith I.J., Tallent J., Ditroilo M. et al. (2012). Assessment of eccentric exercise-induced muscle damage of the elbow flexors by tensiomyography. Journal of Electromyography and Kinesiology 22(3), 334-341. DOI: 10.1016/j.jelekin.2012.01.009 Search in Google Scholar

Yamaguchi S., Inami T., Ishida H., Nagata N., Murayama M. et al. (2024). Bioimpedance analysis for identifying new indicators of exercise-induced muscle damage. Scientific Reports 14(1), 1-9. DOI: 10.1038/s41598-024-66089-8 Search in Google Scholar

Poignard M., Guilhem G., Jubeau M., Martin E., Giol T. et al. (2023). Cold-water immersion and whole-body cryotherapy attenuate muscle soreness during 3 days of match-like tennis protocol. European Journal of Applied Physiology 123(9), 1895-1909. DOI: 10.1007/s00421-023-05190-8 Search in Google Scholar

Rushall B.S. (1990). A tool for measuring stress tolerance in elite athletes. Journal of Applied Sport Psychology 2(1), 51-66. DOI: 10.1080/10413209008406420 Search in Google Scholar

Kellmann M., Kölling S. (2019). Recovery and stress in sport. London: Routledge. DOI: 10.4324/9780429423857 Search in Google Scholar

Hayes M.H. (1921). Experimental development of the graphic rating method. Psychological Bulletin 18, 98-99. Search in Google Scholar

Borg G.A.V. (1982). Psychophysical bases of perceived exertion. Medicine and Science in Sports and Exercise 14(5), 377-381. Search in Google Scholar

Shearer D.A., Sparkes W., Northeast J., Cunningham D.J., Cook C.J. Kilduff L.P. (1970). Measuring recovery: An adapted Brief Assessment of Mood (BAM+) compared to biochemical and power output alterations. Journal of Science and Medicine in Sport 20(5), 512-517. DOI: 10.1016/j.jsams.2016.09.012 Search in Google Scholar

Magal M., Dumke C.L., Urbiztondo Z.G., Cavill M.J., Triplett N.T. et al. (2010). Relationship between serum creatine kinase activity following exercise-induced muscle damage and muscle fibre composition. Journal of Sports Sciences 28(3), 257-266. DOI: 10.1080/02640410903440892 Search in Google Scholar

Traa W.A., Strijkers G.J., Bader D.L., Oomens C.W.J. (2019). Myoglobin and troponin concentrations are increased in early stage deep tissue injury. Journal of the Mechanical Behavior of Biomedical Materials 92, 50-57. DOI: 10.1016/j.jmbbm.2018.12.026 Search in Google Scholar

Kim J.V., Wu G.Y. (2020). Body building and amino-transferase elevations: A review. Journal of Clinical and Translational Hepatology 8(2), 161-167. DOI: 10.14218/JCTH.2020.00005 Search in Google Scholar

Rahimi M.H., Mohammadi H., Eshaghi H., Askari G., Miraghajani M. (2018). The effects of beta-hydroxy-beta--methylbutyrate supplementation on recovery following exercise-induced muscle damage: A systematic review and meta-analysis. Journal of the American College of Nutrition 37(7), 640-649. DOI: 10.1080/07315724.2018.1451789 Search in Google Scholar

Sproston N.R., Ashworth J.J. (2018). Role of C-reactive protein at sites of inflammation and infection. Frontiers in Immunology 9, 754. DOI: 10.3389/fimmu.2018.00754 Search in Google Scholar

de Sousa C.A.Z., Sierra A.P.R., Martínez Galán B.S., Maciel J.F.de S., Manoel R. et al. (2021). Time course and role of exercise-induced cytokines in muscle damage and repair after a marathon race. Frontiers in Physiology 12, 752144. DOI: 10.3389/fphys.2021.752144 Search in Google Scholar

Luchting B., Hinske L.C.G., Rachinger-Adam B., Celi L.A., Kreth S., Azad S.C. (2017). Soluble intercellular adhesion molecule-1: A potential biomarker for pain intensity in chronic pain patients. Biomarkers in Medicine 11(3), 265-276. DOI: 10.2217/bmm-2016-0246 Search in Google Scholar

Kozakowska M., Pietraszek-Gremplewicz K., Jozkowicz A., Dulak J. (2016). The role of oxidative stress in skeletal muscle injury and regeneration: focus on antioxidant enzymes. Journal of Muscle Research and Cell Motility 36(6), 377-393. DOI: 10.1007/s10974-015-9438-9 Search in Google Scholar

Wens S.C.A., Schaaf G.J., Michels M., Kruijshaar M.E., Van Gestel T.J.M. et al. (2016). Elevated plasma cardiac troponin t levels caused by skeletal muscle damage in pompe disease. Circulation: Cardiovascular Genetics 9(1), 6-13. DOI: 10.1161/circgenetics.115.001322 Search in Google Scholar

Wu A.H.B. (2017). Release of cardiac troponin from healthy and damaged myocardium. Frontiers in Laboratory Medicine 1(3), 144-150. DOI: 10.1016/j.flm.2017.09.003 Search in Google Scholar

Andelković M., Baralić I., Dordević B., Stevuljević J.K., Radivojević N. et al. (2015). Hematological and biochemical parameters in elite soccer players during a competitive half season. Journal of Medical Biochemistry 34(4), 460. DOI: 10.2478/jomb-2014-0057 Search in Google Scholar

Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, Public Health, Sports and Recreation, Sports and Recreation, other