This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Owens D.J., Twist C., Cobley J.N., Howatson G., Close G.L. (2019). Exercise-induced muscle damage: What is it, what causes it and what are the nutritional solutions? European Journal of Sport Science 19(1), 71-85. DOI: 10.1080/17461391.2018.1505957Search in Google Scholar
Dupuy O., Douzi W., Theurot D., Bosquet L., Dugué B. (2018). An evidence-based approach for choosing post-exercise recovery techniques to reduce markers of muscle damage, soreness, fatigue, and inflammation: A systematic review with meta-analysis. Frontiers in Physiology 9, 312968. DOI: 10.3389/fphys.2018.00403Search in Google Scholar
Peake J.M., Neubauer O., Gatta P.A.D., Nosaka K. (2017). Muscle damage and inflammation during recovery from exercise. Journal of Applied Physiology 122(3), 559-570. DOI: 10.1152/japplphysiol.00971.2016Search in Google Scholar
Clarkson P.M., Hubal M.J. (2002). Exercise-induced muscle damage in humans. American Journal of Physical Medicine & Rehabilitation 81(11), 52-69. DOI: 10.1097/00002060-200211001-00007Search in Google Scholar
Tee J.C., Bosch A.N., Lambert M.I. (2007). Metabolic consequences of exercise-induced muscle damage. Sports Medicine 37(10), 827-836. DOI: 10.2165/00007256-200737100-00001Search in Google Scholar
Brancaccio P., Lippi G., Maffulli N. (2010). Biochemical markers of muscular damage. Clinical Chemistry and Laboratory Medicine 48(6), 757-767. DOI: 10.1515/CCLM.2010.179Search in Google Scholar
Chalchat E., Gaston A.F., Charlot K., Peñailillo L., Valdés O. et al. (2022). Appropriateness of indirect markers of muscle damage following lower limbs eccentric-biased exercises: A systematic review with meta-analysis. Plos One 17(7), e0271233. DOI: 10.1371/journal.pone.0271233Search in Google Scholar
Baird M.F., Graham S.M., Baker J.S., Bickerstaff G.F. (2012). Creatine-kinase- and exercise-related muscle damage implications for muscle performance and recovery. Journal of Nutrition and Metabolism 2012, 960363. DOI: 10.1155/2012/960363Search in Google Scholar
Elustondo P.A., White A.E., Hughes M.E., Brebner K., Pavlov E., Kane D.A. (2013). Physical and functional association of lactate dehydrogenase (LDH) with skeletal muscle mitochondria. Journal of Biological Chemistry 288(35), 25309-25317. DOI: 10.1074/jbc.M113.476648Search in Google Scholar
Peake J.M., Suzuki K., Hordern M., Wilson G., Nosaka K., Coombes J.S. (2005). Plasma cytokine changes in relation to exercise intensity and muscle damage. European Journal of Applied Physiology 95(5-6), 514-521. DOI: 10.1007/S00421-005-0035-2Search in Google Scholar
Pillen S. (2010). Skeletal muscle ultrasound. European Journal of Translational Myology 20(4), 145-156. DOI: 10.4081/ejtm.2010.1812Search in Google Scholar
Pezzotta G., Querques G., Pecorelli A., Nani R., Sironi S. (2017). MRI detection of soleus muscle injuries in professional football players. Skeletal Radiology 46(11), 1513-1520. DOI: 10.1007/s00256-017-2729-zSearch in Google Scholar
Nowak L., Reyes P.F. (2008). Muscle biopsy: A diagnostic tool in muscle diseases. Journal of Histotechnology 31(3), 101-108. DOI: 10.1179/his.2008.31.3.101Search in Google Scholar
Tricco A.C., Lillie E., Zarin W., O’Brien K.K., Colquhoun H. et al. (2018). PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Annals of Internal Medicine 169(7), 467-473. DOI: 10.7326/M18-0850Search in Google Scholar
Peters M.D., Godfrey C., McInerney P., Munn Z., Tricco A.C., Khalil H. (2024). Scoping reviews. In E. Aromataris, C. Lockwood, K. Porritt, B. Pilla, Z. Jordan (eds), JBI Manual for Evidence Synthesis. DOI: 10.46658/JBIMES-24-09Search in Google Scholar
Cooper S., Cant, R., Kelly, M., Levett-Jones, T., McKenna et al. (2019). An evidence-based checklist for improving scoping review quality. Clinical Nursing Research 30(3), 230-240. DOI:10.1177/1054773819846024Search in Google Scholar
Wilson L.J., Dimitriou L., Hills F.A., Gondek M.B., Cock-burn E. (2019). Whole body cryotherapy, cold water immersion, or a placebo following resistance exercise: a case of mind over matter? European Journal of Applied Physiology 119(1), 135-147. DOI: 10.1007/S00421-018-4008-7Search in Google Scholar
Medeiros F.V.A., Bottaro M., Martins W.R., Ribeiro D.L.F., Marinho E.B.A. et al. (2020). The effects of one session of roller massage on recovery from exercise-induced muscle damage: A randomized controlled trial. Journal of Exercise Science & Fitness 18(3), 148-154. DOI: 10.1016/j.jesf.2020.05.002Search in Google Scholar
Hüttel M., Golditz T., Mayer I., Heiss R., Lutter C. et al. (2020). Effects of pre- and post-exercise cold-water immersion therapy on passive muscle stiffness. Sportverletzung--Sportschaden 34(2), 72-78. DOI: 10.1055/a-0854-8302Search in Google Scholar
Wigernaes I., Hostmark A.T., Kierulf P., Stromme S.B. (2000). Active recovery reduces the decrease in circulating white blood cells after exercise. International Journal of Sports Medicine 21(8), 608-612. DOI: 10.1055/s-2000-8478Search in Google Scholar
Daab W., Bouzid M.A., Lajri M., Bouchiba M., Saafi M.A., Rebai H. (2021). Chronic beetroot juice supplementation accelerates recovery kinetics following simulated match play in soccer players. Journal of the American College of Nutrition 40(1), 61-69. DOI: 10.1080/07315724.2020.1735571Search in Google Scholar
Thompson D., Nicholas C.W., Williams C. (1999). Muscular soreness following prolonged intermittent high-intensity shuttle running. Journal of Sports Sciences 17(5), 387-395. DOI: 10.1080/026404199365902Search in Google Scholar
Lamb K.L., Ranchordas M.K., Johnson E.K., Denning J., Downing F., Lynn A. (2019). No effect of tart cherry juice or pomegranate juice on recovery from exercise-induced muscle damage in non-resistance trained men. Nutrients 11(7), 1593. DOI: 10.3390/nu11071593Search in Google Scholar
Waskiw-Ford M., Hannaian S., Duncan J., Kato H., Sawan S.A. et al. (2020). Leucine-enriched essential amino acids improve recovery from post-exercise muscle damage independent of increases in integrated myofibrillar protein synthesis in young men. Nutrients 12(4), 1061. DOI: 10.3390/nu12041061Search in Google Scholar
Howatson G., Hoad M., Goodall S., Tallent J., Bell P.G., French D.N. (2012). Exercise-induced muscle damage is reduced in resistance-trained males by branched chain amino acids: A randomized, double-blind, placebo controlled study. Journal of the International Society of Sports Nutrition 9(1), 1-7. DOI: 10.1186/1550-2783-9-20Search in Google Scholar
Adamczyk J.G., Krasowska I., Boguszewski D., Reaburn P. (2016). The use of thermal imaging to assess the effectiveness of ice massage and cold-water immersion as methods for supporting post-exercise recovery. Journal of Thermal Biology 60, 20-25. DOI: 10.1016/j.jtherbio.2016.05.006Search in Google Scholar
Chang W.G., Chen C.Y., Li W.F., Chou C.C., Liao Y.H. (2020). Traditional Chinese acupressure massage ameliorates systemic inflammatory responses and joint mobility limitation after acute repeated jumping exercise. Explore 16(1), 26-34. DOI: 10.1016/j.explore.2019.08.003Search in Google Scholar
Cipryan L. (2017). IL-6, antioxidant capacity and muscle damage markers following high-intensity interval training protocols. Journal of Human Kinetics 56(1), 139-148. DOI: 10.1515/hukin-2017-0031Search in Google Scholar
Crane J.D., Ogborn D.I., Cupido C., Melov S., Hubbard A. et al. (2012). Massage therapy attenuates inflammatory signaling after exercise-induced muscle damage. Science Translational Medicine 4(119), 119ra13. DOI: 10.1126/scitranslmed.3002882Search in Google Scholar
Missau E., Teixeira A. de O., Franco O.S., Martins C.N., Paulitsch F. da S. et al. (2018). Cold water immersion and inflammatory response after resistance exercises. Revista Brasileira de Medicina Do Esporte 24(5), 372-376. DOI: 10.1590/1517-869220182405182913Search in Google Scholar
Mackay K., González C., Zbinden-Foncea H., Peñailillo L. (2019). Effects of oral contraceptive use on female sexual salivary hormones and indirect markers of muscle damage following eccentric cycling in women. European Journal of Applied Physiology 119(11-12), 2733-2744. DOI: 10.1007/s00421-019-04254-ySearch in Google Scholar
O’Fallon K.S., Kaushik D., Michniak-Kohn B., Dunne C.P., Zambraski E.J., Clarkson P.M. (2012). Effects of quercetin supplementation on markers of muscle damage and inflammation after eccentric exercise. International Journal of Sport Nutrition and Exercise Metabolism 22(6), 430-437. DOI: 10.1123/ijsnem.22.6.430Search in Google Scholar
Nasser N., Zorgati H., Chtourou H., Guimard A. (2023). Cold water immersion after a soccer match: Does the placebo effect occur? Frontiers in Physiology 14, 1062398. DOI: 10.3389/fphys.2023.1062398Search in Google Scholar
Kusmierczyk J., Wiecek M., Bawelski M., Szygula Z., Rafa--Zablocka K. et al. (2024). Pre-exercise cryotherapy reduces myoglobin and creatine kinase levels after eccentric muscle stress in young women. Frontiers in Physiology 15, 1413949. DOI: 10.3389/fphys.2024.1413949Search in Google Scholar
Hemmati H., Alkasasbeh W.J., Hemmatinafar M., Salesi M., Pirmohammadi S. et al. (2024). Effect of a honey-sweetened beverage on muscle soreness and recovery of performance after exercise-induced muscle damage in strength-trained females. Frontiers in Physiology 15, 1426872. DOI: 10.3389/fphys.2024.1426872Search in Google Scholar
Guilhem G., Hug F., Couturier A., Regnault S., Bournat L. et al. (2013). Effects of air-pulsed cryotherapy on neuromuscular recovery subsequent to exercise-induced muscle damage. The American Journal of Sports Medicine 41(8), 1942-1951. DOI: 10.1177/0363546513490648Search in Google Scholar
Krueger M., Costello J.T., Achtzehn S., Dittmar K.H., Mester J. (2019). Whole-body cryotherapy (−110°C) following high--intensity intermittent exercise does not alter hormonal, inflammatory or muscle damage biomarkers in trained males. Cytokine 113, 277-284. DOI: 10.1016/j.cyto.2018.07.018Search in Google Scholar
Krueger M., Costello J.T., Stenzel M., Mester J., Wahl P. (2020). The physiological effects of daily cold-water immersion on 5-day tournament performance in international standard youth field-hockey players. European Journal of Applied Physiology 120(1), 295-305. DOI: 10.1007/s00421-019-04274-8Search in Google Scholar
Martin-Arrowsmith P.W., Lov J., Dai J., Morais J.A., Churchward-Venne T.A. (2020). Ketone monoester supplementation does not expedite the recovery of indices of muscle damage after eccentric exercise. Frontiers in Nutrition 7, 607299. DOI: 10.3389/fnut.2020.607299Search in Google Scholar
Matos F., Neves E.B., Rosa C., Reis V.M., Saavedra F. et al. (2018). Effect of cold-water immersion on elbow flexors muscle thickness after resistance training. Journal of Strength and Conditioning Research 32(3), 756-763. DOI: 10.1519/JSC.0000000000002322Search in Google Scholar
Montgomery P.G., Pyne D.B., Cox A.J., Hopkins W.G., Minahan C.L., Hunt P. H. (2008). Muscle damage, inflammation, and recovery interventions during a 3-day basketball tournament. European Journal of Sport Science 8(5), 241-250. DOI: 10.1080/17461390802251844Search in Google Scholar
Nicol L.M., Rowlands D.S., Fazakerly R., Kellett J. (2015). Curcumin supplementation likely attenuates delayed onset muscle soreness (DOMS). European Journal of Applied Physiology 115(8), 1769-1777. DOI: 10.1007/s00421-015-3152-6Search in Google Scholar
Bell P.G., Stevenson E., Davison G.W., Howatson G. (2016). The effects of montmorency tart cherry concentrate supplementation on recovery following prolonged, intermittent exercise. Nutrients 8(7), 441. DOI: 10.3390/nu8070441Search in Google Scholar
Zhang X., Li X., Wu Z., Li X., Zhang G. (2024). Deciphering recovery paradigms: Foam rolling’s impact on DOMS and lactate dynamics in elite volleyball athletes. Heliyon 10(7), e29180. DOI: 10.1016/j.heliyon.2024.e29180Search in Google Scholar
Nie J., Tong T.K., George K., Fu F.H., Lin H., Shi Q. (2011). Resting and post-exercise serum biomarkers of cardiac and skeletal muscle damage in adolescent runners. Scandinavian Journal of Medicine & Science in Sports 21(5), 625-629. DOI: 10.1111/j.1600-0838.2010.01096.xSearch in Google Scholar
James C., Dugan C.W., Boyd C., Fournier P.A., Arthur P.G. (2024). Temporal tracking of cysteine 34 oxidation of plasma albumin as a biomarker of muscle damage following a bout of eccentric exercise. European Journal of Applied Physiology 124(9), 2639-2650. DOI: 10.1007/s00421-024-05488-1Search in Google Scholar
Crameri R.M., Aagaard P., Qvortrup K., Langberg H., Olesen J., Kjær M. (2007). Myofibre damage in human skeletal muscle: effects of electrical stimulation versus voluntary contraction. The Journal of Physiology 583(1), 365-380. DOI: 10.1113/jphysiol.2007.128827Search in Google Scholar
Su Q.S., Tian Y., Zhang J.G., Zhang H. (2008). Effects of allicin supplementation on plasma markers of exercise--induced muscle damage, IL-6 and antioxidant capacity. European Journal of Applied Physiology 103(3), 275-283. DOI: 10.1007/s00421-008-0699-5Search in Google Scholar
Tseng C.Y., Lee J.P., Tsai Y.S., Lee S. Da, Kao C.L. et al. (2013). Topical cooling (Icing) delays recovery from eccentric exercise-induced muscle damage. Journal of Strength and Conditioning Research 27(5), 1354-1361. DOI: 10.1519/JSC.0b013e318267a22cSearch in Google Scholar
Zhou Y., Li Y., Wang R. (2011). Evaluation of exercise-induced muscle damage by surface electromyography. Journal of Electromyography and Kinesiology 21(2), 356-362. DOI: 10.1016/j.jelekin.2010.09.009Search in Google Scholar
Hunter A.M., Galloway S.D.R., Smith I.J., Tallent J., Ditroilo M. et al. (2012). Assessment of eccentric exercise-induced muscle damage of the elbow flexors by tensiomyography. Journal of Electromyography and Kinesiology 22(3), 334-341. DOI: 10.1016/j.jelekin.2012.01.009Search in Google Scholar
Yamaguchi S., Inami T., Ishida H., Nagata N., Murayama M. et al. (2024). Bioimpedance analysis for identifying new indicators of exercise-induced muscle damage. Scientific Reports 14(1), 1-9. DOI: 10.1038/s41598-024-66089-8Search in Google Scholar
Poignard M., Guilhem G., Jubeau M., Martin E., Giol T. et al. (2023). Cold-water immersion and whole-body cryotherapy attenuate muscle soreness during 3 days of match-like tennis protocol. European Journal of Applied Physiology 123(9), 1895-1909. DOI: 10.1007/s00421-023-05190-8Search in Google Scholar
Rushall B.S. (1990). A tool for measuring stress tolerance in elite athletes. Journal of Applied Sport Psychology 2(1), 51-66. DOI: 10.1080/10413209008406420Search in Google Scholar
Kellmann M., Kölling S. (2019). Recovery and stress in sport. London: Routledge. DOI: 10.4324/9780429423857Search in Google Scholar
Hayes M.H. (1921). Experimental development of the graphic rating method. Psychological Bulletin 18, 98-99.Search in Google Scholar
Borg G.A.V. (1982). Psychophysical bases of perceived exertion. Medicine and Science in Sports and Exercise 14(5), 377-381.Search in Google Scholar
Shearer D.A., Sparkes W., Northeast J., Cunningham D.J., Cook C.J. Kilduff L.P. (1970). Measuring recovery: An adapted Brief Assessment of Mood (BAM+) compared to biochemical and power output alterations. Journal of Science and Medicine in Sport 20(5), 512-517. DOI: 10.1016/j.jsams.2016.09.012Search in Google Scholar
Magal M., Dumke C.L., Urbiztondo Z.G., Cavill M.J., Triplett N.T. et al. (2010). Relationship between serum creatine kinase activity following exercise-induced muscle damage and muscle fibre composition. Journal of Sports Sciences 28(3), 257-266. DOI: 10.1080/02640410903440892Search in Google Scholar
Traa W.A., Strijkers G.J., Bader D.L., Oomens C.W.J. (2019). Myoglobin and troponin concentrations are increased in early stage deep tissue injury. Journal of the Mechanical Behavior of Biomedical Materials 92, 50-57. DOI: 10.1016/j.jmbbm.2018.12.026Search in Google Scholar
Kim J.V., Wu G.Y. (2020). Body building and amino-transferase elevations: A review. Journal of Clinical and Translational Hepatology 8(2), 161-167. DOI: 10.14218/JCTH.2020.00005Search in Google Scholar
Rahimi M.H., Mohammadi H., Eshaghi H., Askari G., Miraghajani M. (2018). The effects of beta-hydroxy-beta--methylbutyrate supplementation on recovery following exercise-induced muscle damage: A systematic review and meta-analysis. Journal of the American College of Nutrition 37(7), 640-649. DOI: 10.1080/07315724.2018.1451789Search in Google Scholar
Sproston N.R., Ashworth J.J. (2018). Role of C-reactive protein at sites of inflammation and infection. Frontiers in Immunology 9, 754. DOI: 10.3389/fimmu.2018.00754Search in Google Scholar
de Sousa C.A.Z., Sierra A.P.R., Martínez Galán B.S., Maciel J.F.de S., Manoel R. et al. (2021). Time course and role of exercise-induced cytokines in muscle damage and repair after a marathon race. Frontiers in Physiology 12, 752144. DOI: 10.3389/fphys.2021.752144Search in Google Scholar
Luchting B., Hinske L.C.G., Rachinger-Adam B., Celi L.A., Kreth S., Azad S.C. (2017). Soluble intercellular adhesion molecule-1: A potential biomarker for pain intensity in chronic pain patients. Biomarkers in Medicine 11(3), 265-276. DOI: 10.2217/bmm-2016-0246Search in Google Scholar
Kozakowska M., Pietraszek-Gremplewicz K., Jozkowicz A., Dulak J. (2016). The role of oxidative stress in skeletal muscle injury and regeneration: focus on antioxidant enzymes. Journal of Muscle Research and Cell Motility 36(6), 377-393. DOI: 10.1007/s10974-015-9438-9Search in Google Scholar
Wens S.C.A., Schaaf G.J., Michels M., Kruijshaar M.E., Van Gestel T.J.M. et al. (2016). Elevated plasma cardiac troponin t levels caused by skeletal muscle damage in pompe disease. Circulation: Cardiovascular Genetics 9(1), 6-13. DOI: 10.1161/circgenetics.115.001322Search in Google Scholar
Wu A.H.B. (2017). Release of cardiac troponin from healthy and damaged myocardium. Frontiers in Laboratory Medicine 1(3), 144-150. DOI: 10.1016/j.flm.2017.09.003Search in Google Scholar
Andelković M., Baralić I., Dordević B., Stevuljević J.K., Radivojević N. et al. (2015). Hematological and biochemical parameters in elite soccer players during a competitive half season. Journal of Medical Biochemistry 34(4), 460. DOI: 10.2478/jomb-2014-0057Search in Google Scholar