1. bookVolume 65 (2020): Issue 2 (June 2020)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

At the beginning of the year 2016, the representatives of the Polish Radon Centre decided to organize proficiency tests (PTs) for measurements of radon gas and radon decay products in the air, involving radon monitors and laboratory passive techniques. The Silesian Centre for Environmental Radioactivity of the Central Mining Institute (GIG), Katowice, became responsible for the organization of the PT exercises. The main reason to choose that location was the radon chamber in GIG with a volume of 17 m3, the biggest one in Poland. Accordingly, 13 participants from Poland plus one participant from Germany expressed their interest. The participants were invited to inform the organizers about what types of monitors and methods they would like to check during the tests. On this basis, the GIG team prepared the proposal for the schedule of exercises, such as the required level(s) of radon concentrations, the number and periods of tests, proposed potential alpha energy concentration (PAEC) levels and also the overall period of PT. The PT activity was performed between 6th and 17th June 2016. After assessment of the results, the agreement between radon monitors and other measurement methods was confirmed. In the case of PAEC monitors and methods of measurements, the results of PT exercises were consistent and confirmed the accuracy of the calibration procedures used by the participants. The results of the PAEC PTs will be published elsewhere; in this paper, only the results of radon intercomparison are described.

Keywords

1. European Union. (2013). Council Directive 2013/59/Euratom of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/ Euratom, 97/43/Euratom and 2003/122/Euratom. Official Journal of the European Union, OJ L13, 17.1.2014, 1–73. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2014:013:TOC.Search in Google Scholar

2. Polish Atomic Law. (2019). Law of June 13, 2019 amending the Atomic Law and the Act on fire protection. Dz.U., 2019, item 1593. (in Polish).Search in Google Scholar

3. Mamont-Cieśla, K., Stawarz, O., Karpińska, M., Kapała, J., Kozak, K., Grządziel, D., Chałupnik, S., Chmielewska, I., Olszewski, J., Przylibski, T. A., & Żebrowski, A. (2010). Intercomparison of radon CR-39 detector systems conducted in CLOR’s calibration chamber. Nukleonika, 55(4), 589–593.Search in Google Scholar

4. Kozak, K., Kozłowska, B., Przylibski, T. A., Mazur, J., Adamczyk-Lorenc, A., Mamont-Cieśla, K., Stawarz, O., Dorda, J., Kłos, B., Janik, M., & Kochowska, E. (2012). Intercomparison measurements of 222Rn concentration in water samples in Poland. Radiat. Meas., 47, 89–95.10.1016/j.radmeas.2011.10.018Search in Google Scholar

5. World Health Organization. (2009). WHO Handbook on indoor radon: A public health perspective. Geneva: WHO. Available from https://www.ncbi.nlm.nih.gov/books/NBK143222/.Search in Google Scholar

6. Baixeras, C., Bacmeister, U., Climent, H., Aibarracin, D., Enge, W., Freyer, K., Treutler, H. -C., Jönsson, G., Ghose, R., Monnin, M. M., Font, L., Devantier, R., Seidei, J. -L., Sciocchetti, G., & Coteilessa, G. (1996). Report on the first phase activity of an EU project concerning coordinated radon measurements in five European countries. Environ. Int., 22(Suppl. 1), 687–697.10.1016/S0160-4120(96)00172-9Search in Google Scholar

7. Jönsson, G., Bacmeister, G. U., Baixeras, C., Climent, H., Cotellessa, G., Devantier, R., Enge, W., Freyer, K., Font, L. L., Ghose, R., Monnin, M. M., Sciocchetti, G., Seidel, J. -L., & Treutler, H. C. (1997). Comparison of radon measurements done by solid state nuclear track detectors and electronic devices in the framework of an EU-radon project. Radiat. Meas., 28(1/6), 651–655.10.1016/S1350-4487(97)00158-3Search in Google Scholar

8. Foerster, E., Friedrich, F., Dubslaff, M., Schneider, F., & Doering. J. (2019). Instruments to measure Radon-222 activity concentration or exposure to Radon-222; Interlaboratory comparison 2018. Bundesamt für Strahlenschutz. (Report BfS-SW-28/19).Search in Google Scholar

9. Beck, T. R., Buchröder, H., Foerster, E., & Schmidt, V. (2007). Interlaboratory comparisons for passive radon measuring devices at BfS. Radiat. Prot. Dosim., 125(1/4), 572–575.Search in Google Scholar

10. Butterweck, G., Schuler, Ch., Paul, A., Honig, A., Dersch, R., Schmidt, V., Hamel, P., Buchröder, H., Rox, A., & Herzog, W. (2002). Intercomparison exercise of the PTB, BfS, MPA and PSI calibration facilities for radon gas concentration. Radiat. Prot. Dosim., 98(2), 219–222.10.1093/oxfordjournals.rpd.a00671211926372Search in Google Scholar

11. Tokonami, S., Ishimori, Y., Ishikawa, T., Yamasaki, K., & Yamada, Y. (2005). Intercomparison exercise of measurement techniques for radon, radon decay products and their particle size distributions at NIRS. Jap. J. Health Phys., 40(2), 183–190.10.5453/jhps.40.183Search in Google Scholar

12. Rottger, A., Honig, A., Schmidt, V., Buchroder, H., Rox, A., Butterweck, G., Schuler, Ch., Maringer, F. J., Jachs, P., Edelmaier, R., Michielsen, N., Howarth, C. B., Miles, J. C. H., Vargas, A., Ortega, X., Burian, I., Turtiainen, T., & Hagberg, N. (2006). Radon activity concentration – a Euromet and BIPM supplementary comparison. Appl. Radiat. Isot., 64(10/11), 1102–1107.10.1016/j.apradiso.2006.02.08616580217Search in Google Scholar

13. Franci, D., Aureli, T., & Cardellini, F. (2016). An alternative calibration of CR-39 detectors for radon detection beyond the saturation limit. Radiat. Prot. Dosim., 172(4), 496–500.10.1093/rpd/ncv49626656081Search in Google Scholar

14. Jobbagy, V., Stroh, H., Marissens, G., Gruber, V., Roth, D., Willnauer, S., Bernreiter, M., von Philipsborn, H., & H ult, M. (2019). Evaluation of a radon-in-water pilot-proficiency test. Appl. Radiat. Isot., 153, 108836.10.1016/j.apradiso.2019.10883631387079Search in Google Scholar

15. Pommé, S., & Keightley, J. (2015). Determination of reference value and its uncertainty through a power-moderated mean. Metrologia, 52, S200–S212.10.1088/0026-1394/52/3/S200Search in Google Scholar

16. Hofmann, W., Arvela, H. S., Harley, N. H., Marsh, J. W., McLaughlin, J., Röttger, A., & Tokonami, S. (2012). Principles of radon and radon progeny detection systems and measurements. Journal of the ICRU, 12(2), 71–94.10.1093/jicru_ndv008Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo