1. bookVolume 65 (2020): Issue 2 (June 2020)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Radon variability due to floor level in two typical residential buildings in Serbia

Published Online: 29 May 2020
Volume & Issue: Volume 65 (2020) - Issue 2 (June 2020)
Page range: 121 - 125
Received: 30 Nov 2019
Accepted: 17 Jan 2020
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

It is well known that one of the factors that influence the indoor radon variability is the floor level of the buildings. Considering the fact that the main source of indoor radon is radon in soil gas, it is expected that the radon concentration decreases at higher floors. Thus at higher floors the dominant source of radon is originating from building materials, and in some cases there may be deviations from the generally established regularity. In such sense, we chose one freestanding single-family house with loft and other 16-floor high-rise residential building for this study. The indoor radon measurements were performed by two methods: passive and active. We used passive devices based on track-etched detectors: Radtrak2 Radonova. For the short-term indoor radon measurements, we used two active devices: SN1029 and SN1030 (manufactured by Sun Nuclear Corporation). The first device was fixed in the living room at the ground level and the second was moved through the floors of the residential building. Every measuring cycle at the specified floor lasted seven days with the sampling time of 2 h. The results show two different indoor radon behaviours regarding radon variability due to floor level. In the single-family house with loft we registered intense difference between radon concentration in the ground level and loft, while in the high-rise residential building the radon level was almost the same at all floors, and hence we may conclude that radon originated mainly from building materials.

Keywords

1. Bochicchio, F., Campos-Venuti, G., Piermattei, S., Nuccetelli, C., Risica, S., Tommasino, L., Torri, G., Magnoni, M., Agnesod, G., Sgorbati, G., Bonomi, M., Minach, L., Trotti, F., Malisan, M. R., Maggiolo, S., Gaidolfi, L., Giannardi, C., Rongoni, A., Lombardi, M., Cherubini, G., D’Ostilio, S., Cristofaro, C., Pugliese, M., Martucci, V., Crispino, A., Cuzzocrea, P., Sansone Santamaria, A., & Cappai, M. (2005). Annual average and seasonal variations of residential radon concentration for all the Italian Regions. Radiat. Meas., 40, 686–694.10.1016/j.radmeas.2004.12.023Search in Google Scholar

2. Friedmann, H. (2005). Final results of the Austrian Radon Project. Health Phys., 89(4), 339–348.10.1097/01.HP.0000167228.18113.27Search in Google Scholar

3. Du, L., Prasauskas, T., Leivo, V., Turunen, M., Pekkonen, M., Kiviste, M., Aaltonen, A., Martuzevicius, D., & Haverinen-Shaughnessy, U. (2015). Assessment of indoor environmental quality in existing multi-family buildings in North-East Europe. Environ. Int., 79, 74–84.10.1016/j.envint.2015.03.001Search in Google Scholar

4. Cucoş (Dinu), A., Cosma, C., Dicu, T., Begy, R., Moldovan, M., Papp, B., Niţă, D., Burghele, B., & Sainz, C. (2012). Thorough investigations on indoor radon in Băiţa radon-prone area (Romania). Sci. Total Environ., 431, 78–83.10.1016/j.scitotenv.2012.05.013Search in Google Scholar

5. Yarmoshenko, I., Vasilyev, A., Malinovsky, G., Bossew, P., Žunić, Z. S., Onischenko, A., & Zhukovsky, M. (2016). Variance of indoor radon concentration: Major influencing factors. Sci. Total Environ., 541, 155–160.10.1016/j.scitotenv.2015.09.077Search in Google Scholar

6. Kropat, G., Bochud, F., Jaboyedoff, M., Laedermann, J. P., Murith, C., Palacios, M., & Baechler, S. (2014). Major influencing factors of indoor radon concentrations in Switzerland. J. Environ. Radioact., 129, 7–22.10.1016/j.jenvrad.2013.11.010Search in Google Scholar

7. Borgoni, R., De Francesco, D., De Bartolo, D., & Tzavidis, N. (2014). Hierarchical modeling of indoor radon concentration: how much do geology and building factors matter? J. Environ. Radioact., 138, 227–237.10.1016/j.jenvrad.2014.08.022Search in Google Scholar

8. Xie, D., Liao, M., & Kearfott, K. J. (2015). Influence of environmental factors on indoor radon concentration levels in the basement and ground floor of a building – A case study. Radiat. Meas., 82, 52–58.10.1016/j.radmeas.2015.08.008Search in Google Scholar

9. Man, C. K., & Yeung, H. S. (1999). Modeling and measuring the indoor radon concentrations in high-rise buildings in Hong Kong. Appl. Radiat. Isot., 50, 1131–1135.10.1016/S0969-8043(98)00128-6Search in Google Scholar

10. Vukotić, P., Zekić, R., Antović, N. M., & Andjelić, T. (2019). Radon concentrations in multi-story buildings in Montenegro. Nucl. Technol. Radiat. Prot., 34, 165–174.10.2298/NTRP181108020VSearch in Google Scholar

11. Lorenzo-González, M., Ruano-Ravina, A., Peón, J., Piñeiro, M., & Barros-Dios, J. M. (2017). Residential radon in Galicia: a cross-sectional study in a radon-prone area. J. Radiol. Prot., 37(3), 728–741.10.1088/1361-6498/aa792228608782Search in Google Scholar

12. Elío, J., Cinelli, G., Bossew, P., Gutiérrez-Villanueva, J. L., Tollefsen, T., De Cort, M., Nogarotto, A., & Braga, R. (2019). The first version of the Pan-European Indoor Radon Map. Nat. Hazards Earth Syst. Sci., 19, 2451–2464.10.5194/nhess-19-2451-2019Search in Google Scholar

13. Jovanović Popović, M., Ignjatović, D., Radivojević, A., Rajčić, A., Ćuković Ignjatović, N., Đukanović, Lj., & Nedić, M. (2013). National typology of residential buildings in Serbia. Belgrade: Faculty of Architecture University of Belgrade.Search in Google Scholar

14. Udovičić, V., Maletić, D., Banjanac, R., Joković, D., Dragić, A., Veselinović, N., Živanović, J., Savić, M., & Forkapić, S. (2018). Multiyear indoor radon variability in a family house–A case study in Serbia. Nucl. Technol. Radiat. Prot., 33(2), 174–179.10.2298/NTRP1802174USearch in Google Scholar

15. Maletić, D., Udovičić, V., Banjanac, R., Joković, D., Dragić, A., Veselinović, N., & Filipović, J. (2014). Comparison of multivariate classification and regression methods for indoor radon measurements. Nucl. Technol. Radiat. Prot., 29, 17–23.10.2298/NTRP1401017MSearch in Google Scholar

16. Filipović, J., Maletić, D., Udovičić, V., Banjanac, R., Joković, D., Savić, M., & Veselinović, N. (2016). The use of multivariate analysis of the radon variability in the underground laboratory and indoor environment. Nukleonika, 61(3), 357–360. DOI: 10.1515/nuka-2016-0059.10.1515/nuka-2016-0059Search in Google Scholar

17. Udovičić, V., Aničin, I., Joković, D., Dragić, A., Banjanac, R., Grabež, B., & Veselinović, N. (2011). Radon time-series analysis in the Underground Low-level Laboratory in Belgrade, Serbia. Radiat. Prot. Dosim., 145(2/3), 155–158.10.1093/rpd/ncr07421459878Search in Google Scholar

18. Udovičić, V., Filipović, J., Dragić, A., Banjanac, R., Joković, D., Maletić, D., Grabež, B., & Veselinović, N. (2014). Daily and seasonal radon variability in the underground low-background laboratory in Belgrade, Serbia. Radiat. Prot. Dosim., 160(1/3), 62–64.10.1093/rpd/ncu10924707001Search in Google Scholar

19. Ujić, P., Čeliković, I., Kandić, A., Vukanac, I., Đurašević, M., Dragosavac, D., & Žunić, Z. S. (2010). Internal exposure from building materials exhaling 222Rn and 220Rn as compared to external exposure due to their natural radioactivity content. Appl. Radiat. Isot., 68, 201–206.10.1016/j.apradiso.2009.10.00319880324Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo