1. bookVolume 65 (2020): Issue 2 (June 2020)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Open Access

Configuration of the parameters for scanner-based track detector evaluation system

Published Online: 29 May 2020
Volume & Issue: Volume 65 (2020) - Issue 2 (June 2020)
Page range: 133 - 137
Received: 02 Dec 2019
Accepted: 06 Feb 2020
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

According to the new European Union Basic Safety Standards (EU-BSS), preparation of the National Radon Action Plan is obligatory for the Member States. One of the plan’s aims is to carry out an indoor radon survey to identify radon-prone areas. In the radon surveys, track detector methods are used. At the University of Pannonia (Veszprém, Hungary), a new scanner-based detector evaluation system has been developed. For the application of the new system, the selection of appropriate parameters is necessary. In this study, selection of the applied track detectors and setting of the etching conditions have been carried out. Two different types of allyl diglycol carbonate (ADC or CR-39) track detectors were investigated, taking into account the detector’s background and response during the exposure (determination of calibration factor). The Baryotrak’s background track density (0–1.5 tracks mm−2) was lower than that of the 0.8–4 tracks mm−2. The response of the Tastrak was higher, but the deviation of the calibration factor was much higher (1.2–5.3 × 10−3 tracks mm−2/(Bq day m−3)) than in the case of the Baryotrak (1.4–2.8 × 10−3 tracks mm−2/(Bq day m−3)). After the systematic review of the etching system, a new method was developed. For the determination of the optimal track diameter, the argon fluoride (ArF) laser was applied to create tracks with diameters in the range of 10–100 μm. The optimum track size was in the range of 40–60 μm. On this basis, new etching conditions were determined: 6.25 M NaOH solution, a temperature of 90°C, and time period of 8 hours.

Keywords

1. United Nations Scientific Committee on the Effects of Atomic Radiation. (2000). Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes. Vol. 1: Sources. New York: United Nations.Search in Google Scholar

2. Podstawczyńska, A., & Pawlak, W. (2016). Soil heat flux and air temperature as factors of radon (Rn-222) concentration in the near-ground air layer. Nukleonika, 61(3), 231–237. DOI: 10.1515/nuka-2016-0039.10.1515/nuka-2016-0039Search in Google Scholar

3. Gregorič, A., Vaupotič, J., Kardos, R., Horváth, M., Bujtor, T., & Kovács, T. (2013). Radon emanation of soils from different lithological units. Carpath. J. Earth Environ. Sci., 8(2), 185–190.Search in Google Scholar

4. Chalupnik, S., & Wysocka, M. (2003). Measurement of radon exhalation from soil – development of the method and preliminary results. J. Mining Sci., 39, 191–198. https://doi.org/10.1023/B:JOMI.0000008467.53630.09.10.1023/B:JOMI.0000008467.53630.09Search in Google Scholar

5. Wysocka, M., Kotyrba, A., Chalupnik, S., & Skowronek, J. (2005). Geophysical methods in radon risk studies. J. Environ. Radioact., 82(3), 351–362. DOI: 10.1016/j.jenvrad.2005.02.009.10.1016/j.jenvrad.2005.02.00915885380Search in Google Scholar

6. Kovács, T., Shahrokhi, A., Sas, Z., Vigh, T., & Somlai, J. (2017). Radon exhalation study of manganese clay residue and usability in brick production. J. Environ. Radioact., 168, 15–20. https://doi.org/10.1016/j.jenvrad.2016.07.014.10.1016/j.jenvrad.2016.07.01427452913Search in Google Scholar

7. Sas, Z., Somlai, J., Szeiler, G., & Kovács, T. (2015). Usability of clay mixed red mud in Hungarian building material production industry. J. Radioanal. Nucl. Chem., 306(1), 271–275. https://doi.org/10.1007/s10967-015-3966-z.10.1007/s10967-015-3966-zSearch in Google Scholar

8. Wieprzowski, K., Bekas, M., Waśniewska, E., Wardziński, A., & Magiera, A. (2018). Radon 222Rn in drinking water of West Pomeranian Voivodeship and Kuyavian-Pomeranian Voivodeship, Poland. Nukleonika, 63(2), 43–46. DOI: 10.2478/nuka-2018-0005.10.2478/nuka-2018-0005Search in Google Scholar

9. Jobbágy, V., Altzitzoglou, T., Malo, P., Tanner, V., & Hult, M. (2017). A brief overview on radon measurements in drinking water. J. Environ. Radioact., 173, 18–24. https://doi.org/10.1016/j.jenvrad.2016.09.019.10.1016/j.jenvrad.2016.09.01927745714Search in Google Scholar

10. Dixon, D. W. (2001). Radon exposures from the use of natural gas in buildings. Radiat. Prot. Dosim., 97(3), 359–364. DOI: 10.1093/oxfordjournals.rpd.a006671.10.1093/oxfordjournals.rpd.a00667111843341Search in Google Scholar

11. European Union. (2013). Council Directive 2013/59/Euratom of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/ Euratom, 97/43/Euratom and 2003/122/Euratom. Official Journal of the European Union, OJ L13, 17.1.2014, 1–73. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2014:013:TOC.Search in Google Scholar

12. Somogyi, Gy., Nikl, I., Csige, I., & Hunyadi, I. (1989). Radon aktivitáskoncentrációjánakméréseés a belég zésbőleredősugárterhelésmeghatározásahazailakás oklégterében. Izotóptechnika, diagnosztika, 32(4), 177–183.Search in Google Scholar

13. Nikl, I. (1996). The radon concentration and absorbed dose rate in Hungarian dwellings. Radiat. Prot. Dosim., 67(3), 225–228. https://doi.org/10.1093/oxfordjournals.rpd.a031821.10.1093/oxfordjournals.rpd.a031821Search in Google Scholar

14. International Commission on Radiological Protection. (1993). Protection against radon-222 at home and at work. (ICRP Publication 65). Ann. ICRP, 23(2).Search in Google Scholar

15. Hámori, K., Tóth, E., Lénárd, P., Köteles, G., Losonci, A., & Minda, M. (2006). Evaluation of indoor radon measurements in Hungary. J. Environ. Radioact., 88, 189–198. https://doi.org/10.1016/j.jenvrad.2006.02.002.10.1016/j.jenvrad.2006.02.00216581164Search in Google Scholar

16. Szeiler, G., Somlai, J., Ishikawa, T., Omori, Y., Mishra, R., Sapra, B. K., Mayya, Y. S., Tokonami, S., Csordás, A., & Kovács, T. (2012). Preliminary results from an indoor radon thoron survey in Hungary. Radiat. Prot. Dosim., 152, 243–246. DOI: 10.1093/rpd/ncs231.10.1093/rpd/ncs23122927648Search in Google Scholar

17. Müllerova, M., Kozak, K., Kovács, T., Csordás, A., Grzadziel, D., Holy, K., Mazur, J., Moravcsík, A., Neznal, Matej, Neznal, Martin, & Smetanova, I. (2014). Preliminary results of indoor radon survey in V4 countries. Radiat. Prot. Dosim., 160(1/3), 210–213. https://doi.org/10.1093/rpd/ncu081.10.1093/rpd/ncu08124723197Search in Google Scholar

18. Müllerova, M., Kozak, K., Kovács, T., Smetanova, I., Csordás, A., Grzadziel, D., Holy, K., Mazur, J., Moravcsík, A., Neznal, Martin, & Neznal, Matej (2016). Indoor radon survey in Visegrad countries. Appl. Radiat. Isot., 110, 124–128. https://doi.org/10.1016/j.apradiso.2016.01.010.10.1016/j.apradiso.2016.01.01026774389Search in Google Scholar

19. Müllerova, M., Mazur, J., Csordás, A., Grzadziel, D., Holy, K., Kovács, T., Kozak, K., Kurekova, P., Nagy, E., Neznal, M., & Smetanova, I. (2017). Preliminary results of radon survey in the kindergartens of V4 countries. Radiat. Prot. Dosim., 177(1/2), 95–98. https://doi.org/10.1093/rpd/ncx155.10.1093/rpd/ncx15529036677Search in Google Scholar

20. Csordás, A., Bátor, G., Horváth, D., Somlai, J., & Kovács, T. (2016). Validation of the scanner based radon track detector evaluation system. Radiat. Meas., 87, 1–7. https://doi.org/10.1016/j.radmeas.2016.02.011.10.1016/j.radmeas.2016.02.011Search in Google Scholar

21. Nikezic, D., & Yu, K. N. (2004). Formation and growth of tracks in nuclear track materials. Mater. Sci. Eng., 46, 51–123. https://doi.org/10.1016/j.mser.2004.07.003.10.1016/j.mser.2004.07.003Search in Google Scholar

22. Matiullah,, Rehman, S., Rehman, S., Mati, N., & Ahmad, S. (2005). Some more new etchants for CR-39 detector. Radiat. Meas., 39, 551–555. DOI: 10.1016/j. radmeas.2004.10.009.Search in Google Scholar

23. Ashry, A. H., Abdalla, A. M., Rammah, Y. S., Eisa, M., & Ashraf, O. (2014). The use of CH3OH additive to NaOH for etching alpha particle tracks in a CR-39 plastic nuclear track detector. Radiat. Phys. Chem., 101, 41–45. https://doi.org/10.1016/j.radphyschem.2014.03.037.10.1016/j.radphyschem.2014.03.037Search in Google Scholar

24. Bátor, G., Csordás, A., Horváth, D., & Kovács, T. (2015). A comparison of a track shape analysis-based automated slide scanner system with traditional methods. J. Radioanal. Nucl. Chem., 306(1), 333–339. https://doi.org/10.1007/s10967-015-4013-9.10.1007/s10967-015-4013-9Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo