1. bookVolume 38 (2020): Issue 2 (June 2020)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Dependence of defect concentration, optical and photocatalytic properties of β-Ni(OH)2/ZnO and NiO/ZnO composite powders on phase transformation

Published Online: 06 Oct 2020
Volume & Issue: Volume 38 (2020) - Issue 2 (June 2020)
Page range: 219 - 227
Received: 08 Mar 2017
Accepted: 23 Apr 2019
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

β-Ni(OH)2/ZnO composite powders were successfully synthesized by hydrothermal method at 180 °C for 15 h whereas NiO/ZnO composite powders formed after the as-prepared powders were calcined at 800 °C for 1 h in air. The X-ray diffractometer (XRD), scanning electron microscope (SEM), UV-Vis spectrophotometer were used to characterize the phase, particle shape as well as size and optical properties, respectively. In this system, it was found that ZnO is a major phase while β-Ni(OH)2 and NiO are a minor phases. The altered particle shape of ZnO was influenced by addition of Ni(CH3COO)2·6H2O whereas the particle shape of the minor phase was changed due to the calcination process. The optical band gap decreased when the amount of minor phase increased. For photocatalytic study, it was found that 6 mol% β-Ni(OH)2/ZnO composite powders exhibited the best decolorization of methylene blue aqueous solution.

Keywords

[1] Kant R., Nat. Sci., 4 (2012), 22.10.4236/ns.2012.41004Search in Google Scholar

[2] Klubnuan S., Suwanboon S., Amornpitoksuk P., Opt. Mater., 53 (2016), 134.10.1016/j.optmat.2016.01.045Search in Google Scholar

[3] Jin Z., Yang D.L., Zhang S.H., Jian X.G., Chinese Chem. Lett., 18 (2007), 1543.10.1016/j.cclet.2007.10.007Search in Google Scholar

[4] Hafidi M., Amir S., Revel J.C., Proc. Biochem., 40 (2005), 2615.10.1016/j.procbio.2004.06.062Search in Google Scholar

[5] Chong M.N., Jin B., Chow C.W.K., Saint C., Water Res., 44 (2010), 2997.10.1016/j.watres.2010.02.03920378145Search in Google Scholar

[6] Salazar-Villannueva M., Cruz-López A., Zaldívar-Cadena A.A., Tovar-Corona A., Guevara-Romero M.L., Vazquez-Cuchillo O., Mater. Sci. Semicond. Proc., 58 (2017), 8.10.1016/j.mssp.2016.10.050Search in Google Scholar

[7] Yu C., Wu Z., Liu R., He H., Fan W., Xue S., J. Phys. Chem. Solids, 93 (2016), 7.10.1016/j.jpcs.2016.02.008Search in Google Scholar

[8] Duo S., Li Y., Liu Z., Zhong R., Liu T., Mater. Sci. Semicond. Proc., 56 (2016), 196.10.1016/j.mssp.2016.08.018Search in Google Scholar

[9] Scuderi V., Amiard G., Boninelli S., Scalese S., Miritello M., Sbema P.M., Impellizzeri G., Privitera V., Mater. Sci. Semicond. Proc., 42 (2016), 89.10.1016/j.mssp.2015.08.008Search in Google Scholar

[10] Lu Y., Shang H., Shi F., Chao C., Zhang X., Zhang B., J. Phys. Chem. Solids, 85 (2015), 44.10.1016/j.jpcs.2015.04.016Search in Google Scholar

[11] Barzegar M., Habibi-Yangjeh A., Behboudnia M., J. Phys. Chem. Solids, 70 (2009), 1353.10.1016/j.jpcs.2009.07.025Search in Google Scholar

[12] Goutham S., Kaur S., Sadasivuni K.K., Bal J.K., Jayarambabu N., Kumar D.S., Rao K.V., Mater. Sci. Semicond. Proc., 57 (2017), 110.10.1016/j.mssp.2016.09.037Search in Google Scholar

[13] Wang M., Xing C., Cao K., Meng L., Liu J., J. Phys. Chem. Solids, 75 (2014), 808.10.1016/j.jpcs.2014.02.011Search in Google Scholar

[14] Marin O., Tirado M., Budini N., Mosquera E., Figueroa C., Comedi D., Mater. Sci. Semicond. Proc., 56 (2016), 59.10.1016/j.mssp.2016.07.007Search in Google Scholar

[15] Ahsanulhaq Q., Kim S.H., Hahn Y.B., J. Phys. Chem. Solids, 70 (2009), 627.10.1016/j.jpcs.2009.01.007Search in Google Scholar

[16] Xu K., Liu C., Chen R., Fang X., Wu X., Liu J., Physica B, 502 (2016), 155.10.1016/j.physb.2016.07.017Search in Google Scholar

[17] Zhang X.L., Dai H.T., Zhao J.L., Wang S.G., Sun X.W., Cryst. Res. Technol., 49 (2014), 220.10.1002/crat.201300334Search in Google Scholar

[18] Hall D.S., Lockwood D.J., Bock C., MacDougall B.R., Proc. R. Soc. A., 471 (2016), 20140792.10.1098/rspa.2014.0792430913225663812Search in Google Scholar

[19] Qiao H., Wei Z., Yang H., Zhu L., Yan X., J. Nanomater., 2 (2009), 1.10.1155/2009/795928Search in Google Scholar

[20] Koao L.F., Dejene F.B., Tsega M., Swart H.C., Physica B, 480 (2016), 53.10.1016/j.physb.2015.09.010Search in Google Scholar

[21] Lupan O., Chow L., Chai G., Roldan B., Naitabdi A., Schulte A., Heinrich H., Mater. Sci. Eng. B, 145 (2007), 57.10.1016/j.mseb.2007.10.004Search in Google Scholar

[22] Zamiri R., Lemos A.F., Reblo A., Ahangar H.A., Ferreira J.M.F., Ceram. Int., 40 (2014), 523.10.1016/j.ceramint.2013.06.034Search in Google Scholar

[23] Takarkhede M.V., Band S.A., Nemade K.R., Fadanavis S.A., Ceram. Int., 42 (2016), 1021.Search in Google Scholar

[24] Malashchonak M.V., Streltsov E.A., Mazanik A.V., Kulak A.I., Poznyak S.K., Stroyuk O.L., Kuchmiy S.Y., Gaiduk P.I., Thin Solid Films, 589 (2015), 145.10.1016/j.tsf.2015.04.057Search in Google Scholar

[25] Julkapli N.M., Bagheri S., Hamid S.B.A., Sci. World J., 24 (2014), 692307.10.1155/2014/727496421340625383380Search in Google Scholar

[26] Cai X., Cai Y., Liu Y., Deng S., Wang Y., Wang Y., Djerdj I., Ceram. Int., 40 (2014), 57.10.1016/j.ceramint.2013.05.103Search in Google Scholar

[27] Klubnuan S., Amornpitoksuk P., Suwanboon S., Mater. Sci. Semicond. Proc., 39 (2015), 515.10.1016/j.mssp.2015.05.049Search in Google Scholar

[28] Dai P., Yan T.T., Yu X.X., Bai Z.M., Wu M.Z., Nanoscale Res. Lett., 11 (2016), 226.10.1186/s11671-016-1445-2484827827119154Search in Google Scholar

[29] Tkalych A.J., Yu K., Carter E.A., J. Phys. Chem. C, 119 (2015), 24315.10.1021/acs.jpcc.5b08481Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo