1. bookVolume 38 (2020): Issue 2 (June 2020)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Structural and morphological characterizations of pure and Ce-doped ZnO nanorods hydrothermally synthesized with different caustic bases

Published Online: 06 Oct 2020
Volume & Issue: Volume 38 (2020) - Issue 2 (June 2020)
Page range: 228 - 235
Received: 20 Apr 2017
Accepted: 23 Apr 2019
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

This investigation concerns the synthesis as well as structural and morphological characterizations of pure and Ce-doped ZnO nanorods. The samples were synthesized by simple low-temperature hydrothermal process using respectively NaOH and KOH as caustic bases. The as-synthesized nanorods were characterized in terms of their morphological, structural, compositional and vibrational properties. The sizes of the rods were found to be 1.5 μm to 2 μm in length and 250 nm to 300 nm in diameter. The presence of Ce ions in ZnO (NaOH) favored the agglomeration of the rods to form flower-like nanostructures. EDAX measurements showed Zn rich materials with high oxygen vacancy concentration. XRD results indicated that the synthesized ZnO nanorods possess a pure wurtzite structure with good crystallinity. It has also been found that Ce doping deteriorates the crystalline quality of ZnO (NaOH) and improves that of ZnO (KOH). The insignificant intensities observed in FT-IR signals confirm that the synthesized nanorods are of high purity. The Raman spectroscopy studies showed that Ce ions shift the vibrational modes towards lower frequencies. The peaks related to E2 (high) mode in ZnO (KOH) are relatively intense compared to those of ZnO (NaOH). The peaks are found to be shifted and asymmetrically broadened due to anharmonic effects originating from quantum-phonon-effect confinement.

Keywords

[1] Norton D.P., Heo Y.W., Ivill M.P., Pearton S.J., Chosholm M.F., Steiner T., Mater. Today, 7 (2004), 34.10.1016/S1369-7021(04)00287-1Search in Google Scholar

[2] Saad L., Mary R., J. Serb.-Chem. Soc., 73 (2008), 997.10.2298/JSC0810997SSearch in Google Scholar

[3] Nirmala Jothi N.S., Gunaseelan R., Sagayaraj P., Arch. Appl. Sci. Res., 4 (2012), 1698.Search in Google Scholar

[4] Sun Z.P., Liu L., Zhang L., Jia D.Z., Nanotechnology, 17 (2006), 2266.10.1088/0957-4484/17/9/032Search in Google Scholar

[5] Wahyuono R.A., Schmidt C., Dellith A., Dellith J., Schulz M., Seyring M., Rettenmayr M., Plentz J., Dietzek B., Open Chem., 14 (2016), 158.10.1515/chem-2016-0016Search in Google Scholar

[6] El-Sayed A.M., Yakout S.M., J. Res. Nanotechnology, 1 (2016), 690025.10.5171/2016.690025Search in Google Scholar

[7] Liu X., Wu X., Cao H., Chang R.P.H., J. Appl. Phys., 95 (2004), 3141.10.1063/1.1646440Search in Google Scholar

[8] Mishra B.G., Rao G.R., Bull. Mater. Sci., 25 (2002), 155.10.1007/BF02706236Search in Google Scholar

[9] Yang B., Kumar A., Zhang H., Feng P., Katiyar R.S., Wang Z., J. Phys. D. Appl. Phys., 42 (2009), 045415.10.1088/0022-3727/42/4/045415Search in Google Scholar

[10] Zhang H., Feng J., Wang J., Zhang M., Mater. Lett., 61 (2007), 5202.10.1016/j.matlet.2007.04.030Search in Google Scholar

[11] Sahu D., Panda N.R., Acharya B.S., Panda A.K., Ceram. Int., 40 B (2014), 11041.10.1016/j.ceramint.2014.03.119Search in Google Scholar

[12] Bhosle V., Tiwari A., Narayan J.J., Appl. Phys., 100 (2006), 033713.10.1063/1.2218466Search in Google Scholar

[13] Dar G.N., Umar A., Zaidi S.A., Ibrahim A.A., Abaker M., Baskoutas S., Al-Assiri M.S., Sens. Actuator. B, 173 (2012), 72.10.1016/j.snb.2012.06.001Search in Google Scholar

[14] Ni Y.H., Wei X.W., Hong J.M., Ye Y., Mater. Sci. Eng. B, 121 (2005), 42.10.1016/j.mseb.2005.02.065Search in Google Scholar

[15] Xia C., Hu C., Zhou P., J. Exp. Nanosci., 8 (2013), 69.10.1080/17458080.2011.559591Search in Google Scholar

[16] Aisah N., Gustiono D., Fauzia V., Sugihartono I., Nuryadi R., IOP Conf. Ser. Mater. Sci. Eng., 172 (2017), 012037.10.1088/1757-899X/172/1/012037Search in Google Scholar

[17] Chelouche A., Touam T., Djouadi D., Aksas A., Optik, 125 (2014), 5626.10.1016/j.ijleo.2014.06.072Search in Google Scholar

[18] Li G.R., Lu X.H., Zhao W.X., Su C.Y., Tong Y.X., Cryst. Growth Des., 8 (2008), 1276.10.1021/cg7009995Search in Google Scholar

[19] Meddouri M., Hammiche L., Slimi O., Djouadi D., Chelouche A., Mater. Sci.-Poland, 34 (2016), 659.10.1515/msp-2016-0082Search in Google Scholar

[20] Rodnyi P.A., Khodyuk V., Opt. Spectrosc., 111 (2011), 776.10.1134/S0030400X11120216Search in Google Scholar

[21] Kohan A.F., Ceder G., Morgan D., van de Walle C.G., Phys. Rev. B, 61 (2000), 15019.10.1103/PhysRevB.61.15019Search in Google Scholar

[22] Xu C., Xu G., Liu Y., Wang G., Solid State Commun., 122 (2002), 175.10.1016/S0038-1098(02)00114-XSearch in Google Scholar

[23] Zhang H.Z., Kong Y.C., Wang Y.Z., Du X., Bai Z.G., Wang J.J., Yu D.P., Ding Y., Hang Q.L., Feng S.Q., Solid State Commun., 109 (1999), 677.10.1016/S0038-1098(99)00015-0Search in Google Scholar

[24] Danishvar N., Aber S., Seyed Dorraji M.S., Khataee A.R., Rasoulifard M.H., Sep. Purif. Technol., 58 (2007), 91.10.1016/j.seppur.2007.07.016Search in Google Scholar

[25] Alias S.S., Ismail A.B., Mohamad A.A., J. Alloys Compd., 499 (2010), 231.10.1016/j.jallcom.2010.03.174Search in Google Scholar

[26] Zhao X., Li M., Lou X., Adv. Powder Technol., 25 (2014), 372.10.1016/j.apt.2013.06.004Search in Google Scholar

[27] Rem F., Xin R., Ge X., Leng Y., Acta Biomater., 5 (2009), 3141.10.1016/j.actbio.2009.04.01419446055Search in Google Scholar

[28] Geetha A., Mallika J., A. J. Sci. Technol., 3 (2015), 72.Search in Google Scholar

[29] Dandeneau C.S., Jeon Y.H., Shelton C.T., Plant T.K., Cann D.P., Gibbons B.J., Thin Solid Films, 517 (2009), 4448.10.1016/j.tsf.2009.01.054Search in Google Scholar

[30] Awwad A.M., Albiss B., Ahmad A.L., Adv. Mat. Lett., 5 (2014), 520.10.5185/amlett.2014.5575Search in Google Scholar

[31] Dos Santos M.L., Lima R.C., Riccardi C.S., Tranquilin R.L., Bueno P.R., Varela J.A., Longo E., Mater. Lett., 62 (2008), 4509.10.1016/j.matlet.2008.08.011Search in Google Scholar

[32] Alim K.A., Fonoberov V.A., Shamsa M., Baladin A.A., J. Appl. Phys., 97 (2005), 124313.10.1063/1.1944222Search in Google Scholar

[33] Samuel S.M., Koshy J., Chandran A., George K.C., Indian J. Pure Appl. Phys., 48 (2010), 703.Search in Google Scholar

[34] Ristic M., Music S., Ivanda M., Popovic S., J. Alloys Compd., 397 (2005), L1.10.1016/j.jallcom.2005.01.045Search in Google Scholar

[35] Reddy A.J., Kokila M.K., Nagabhushana H., Rao J.L., Shivacumara C., Nagabhushana B.M., Chakradhar R.P.S., Spectrochim. Acta A, 81 (2011), 59.10.1016/j.saa.2011.06.048Search in Google Scholar

[36] Samanta K., Bhattacharya P., Katiyar R.S., Iwamoto W., Pagliuso P.G., Rettor C., Phys. Rev. B, 73 (2006), 245213.10.1103/PhysRevB.73.245213Search in Google Scholar

[37] Chouchene B., Ben Chaabane T., Balan L., Girot E., Mozet K., Medjahdi G., Schneider R., Beilstein J. Nanotechnol., 7 (2016), 1338.10.3762/bjnano.7.125Search in Google Scholar

[38] Sreenivas K., Kumar S., Choudhary J., Gupta V., Pranama J. Phys., 65 (2005), 809.10.1007/BF02704079Search in Google Scholar

[39] Francisco M.S.P., Mastelaro V.R., Nascente P.A.P., Florentino A.O., J. Phys. Chem. B, 105 (2001), 10515.10.1021/jp0109675Search in Google Scholar

[40] Xu Q.H., Xu D.M., Guan M.Y., Guo Y., Qi Q., Li G.D., Sens. Actuator. B, 177 (2013), 1134.10.1016/j.snb.2012.12.029Search in Google Scholar

[41] Richter H., Wang Z.P., Ley L., Solid State Commun., 39 (1981), 625.10.1016/0038-1098(81)90337-9Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo