1. bookVolume 38 (2020): Issue 2 (June 2020)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Growth, structural and optical properties of novel nonlinear optical potassium phthalate di lithium borate (KPDLiB) single crystals

Published Online: 06 Oct 2020
Volume & Issue: Volume 38 (2020) - Issue 2 (June 2020)
Page range: 214 - 218
Received: 17 Feb 2017
Accepted: 23 Apr 2019
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Novel nonlinear optical semi-organic, potassium phthalate di lithium borate (KPDLiB) single crystals were successfully grown by the slow solvent evaporation technique. Good crystalline nature and an orthorhombic structure were confirmed by powder X-ray diffraction and single crystal X-ray diffraction studies. The functional groups of KPDLiB were identified using FT-IR spectrum recorded in the range of 4000 cm−1 to 450 cm−1. UV-Vis spectrum showed transmitting ability of the crystals in the entire visible region. The photoluminescence spectrum exhibited good fluorescence emission in a visible region at 384 nm, 416 nm and 578 nm. The second harmonic generation efficiency of the grown crystal was evaluated from Kurtz powder technique.

Keywords

[1] Zyss J. (Ed.), Chem. Phys., (1999), 243.Search in Google Scholar

[2] Karn A S. P. (Ed.), J. Phys. Chem. A, (2000), 104.Search in Google Scholar

[3] Kanis D. R., Ratner M.A., Marks T.S., Chem. Rev. 94 (1994), 195.10.1021/cr00025a007Search in Google Scholar

[4] Dalal J., Sinha N., Kumar B., Opt. Mater., 37 (2014), 457.10.1016/j.optmat.2014.07.006Search in Google Scholar

[5] Liu G., Liu J., Zheng X., Liu Y., Yuan D., Zhang X., Gao Z., Tao X., CrystEngComm, 17 (2015), 2569.10.1039/C4CE02182GSearch in Google Scholar

[6] Izatt R.M., Bradshaw J.S., Dalley N.K., Chem. Rev., 91 (1981), 137.Search in Google Scholar

[7] George J., Premachandran S.K., J. Phys. D, 14 (1981), 1277.10.1088/0022-3727/14/7/015Search in Google Scholar

[8] Sawyer G.A., Bearden A. J., Henins I., Jahoda F. C., Ribe F. I., Phys. Rev., 131 (1963), 1891.10.1103/PhysRev.131.1891Search in Google Scholar

[9] Miniewicz A., Mol. Cryst. Liq. Cryst., 229 (1993), 13.Search in Google Scholar

[10] Chen C.T., Wu B.C., Jiang A.D., You G.M., Sci. Sin. B 28 (1983), 235.Search in Google Scholar

[11] Chen C.T., Wu Y.C., Jiang A.D., Wu B.C., You G.M., Li R.K., J. Op.t Soc. Am. B, 6 (1989), 616.10.1364/JOSAB.6.000616Search in Google Scholar

[12] Timpanaro S., Sassella A., Barghesi A.Z., Por W., Fontaine P., Goldmann M., Adv. Matter., 13 (2001), 127.10.1002/1521-4095(200101)13:2<127::AID-ADMA127>3.0.CO;2-YSearch in Google Scholar

[13] Chithambaram V., Jerome Das S., Arivudai Nambi R., KRISHNAN S., Laser Technol., 43 (2011), 1229.10.1016/j.optlastec.2011.03.014Search in Google Scholar

[14] Sivakumar B., Gokul Raj S., Ramesh Kumar G., Mohan R., J. Crystall. Proc. Technol., 2 (2012), 130.Search in Google Scholar

[15] Sajan D., Vijayan N., Safakath K., Reji P., Hubert Joe I., J Phys Chem A, 115 (2011), 8216.10.1021/jp201818ySearch in Google Scholar

[16] Senthil Pandian M., Balamurugan N., Bhagavannarayana G., Ramasamy P., J. Crystal Growth, 310 (2008), 4143.10.1016/j.jcrysgro.2008.06.053Search in Google Scholar

[17] Aleksandrovsky A.S., Krylov A.S., Malakhovskii A.V., Potseluyko A.M., Zaitsev A.I., Zamkov A.V., J. Phys. Chem. Solids, 66 (2005), 75.10.1016/j.jpcs.2004.05.009Search in Google Scholar

[18] Reichman J., Handbook of Optical Filters for Fluorescence Microscopy, Chroma Technology, Brattleboro, 2010.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo