1. bookVolume 37 (2019): Issue 3 (September 2019)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Structural and surface analysis of chemical vapor deposited boron doped aluminum nitride thin film on aluminum substrates

Published Online: 18 Oct 2019
Volume & Issue: Volume 37 (2019) - Issue 3 (September 2019)
Page range: 395 - 403
Received: 19 Apr 2018
Accepted: 23 Apr 2019
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Chemical vapor deposition (CVD) process was conducted for synthesis of boron (B) doped aluminum nitride (B-AlN) thin films on aluminum (Al) substrates. To prevent melting of the Al substrates, film deposition was carried out at 500 °C using tert-buthylamine (tBuNH2) solution delivered through a bubbler as a nitrogen source instead of ammonia gas (NH3). B-AlN thin films were prepared from three precursors at changing process parameters (gas mixture ratio). X-ray diffraction (XRD) technique and atomic force microscope (AFM) were used to investigate the structural and surface properties of B-AlN thin films on Al substrates. The prepared thin films were polycrystalline and composed of mixed phases {cubic (1 1 1) and hexagonal (1 0 0)} of AlN and BN with different orientations. Intensive AlN peak of high intensity was observed for the film deposited at a flow rate of the total gas mixture of 25 sccm. As the total gas mixture flow decreased from 60 sccm to 25 sccm, the crystallite size of AlN phase increased and the dislocation density decreased. Reduced surface roughness (10.4 nm) was detected by AFM for B-AlN thin film deposited on Al substrate using the lowest flow rate (25 sccm) of the total gas mixture.

Keywords

[1] Feng Z.C., III-Nitride Semiconductor Materials, World Scientific, Taiwan, 2006.10.1142/p437Search in Google Scholar

[2] Chaudhuri J., Nyakiti L., Lee R.G., Gu Z., Edgar J.H., Wen J.G., Mater. Charact., 58 (2007), 672.10.1016/j.matchar.2006.11.013Open DOISearch in Google Scholar

[3] Olivares J., González-Castilla S., Clement M., Sanz-Hervás A., Vergara L., Sangrador J., Iborra E., Diam. Relat. Mater., 16 (2007), 1421.10.1016/j.diamond.2006.11.065Search in Google Scholar

[4] Kar J.P., Bose G., Tuli S., Scripta Mater., 54 (2006), 1755.10.1016/j.scriptamat.2006.01.038Search in Google Scholar

[5] Zhang J.X., Cheng H., Chen Y.Z., Uddin A., Yuan S., Geng S.J., Zhang S., Surf. Coat. Tech., 198 (2005), 68.10.1016/j.surfcoat.2004.10.075Search in Google Scholar

[6] Xu X.H., Wu H.S., Zhang C.J., Jin Z.H., Thin Solid Films, 388 (2001), 62.10.1016/S0040-6090(00)01914-3Search in Google Scholar

[7] Vispute R.D., Narayan J., Wu H., Jagannadham K., J. Appl. Phys., 77 (1995), 431.10.1063/1.359441Search in Google Scholar

[8] Vispute R.D., Wu H., Narayan J., Appl. Phys. Lett., 67 (1995), 1549.10.1063/1.114489Search in Google Scholar

[9] Lu H., Schaff WI. J., Hwang J., Wu H., Koley G., Eastman L.F., Appl. Phys. Lett., 79 (2001), 1489.10.1063/1.1402649Search in Google Scholar

[10] Guerrero R.M., Garcia J.R.V., Superficie y Vacio, 9 (2001), 82.Search in Google Scholar

[11] Morita M., Uesugi N., Isogai S., Tsubouchi K., Mikoshiba N., Jpn. J. Appl. Phys., 20 (1981), 17.10.1143/JJAP.20.17Search in Google Scholar

[12] Chubachi Y., Sato KI., Kojima K., Thin Solid Films, 122 (1984), 259.10.1016/0040-6090(84)90052-XSearch in Google Scholar

[13] Andrew R.B., OpenStax CNX., July 14 (2009).Search in Google Scholar

[14] Roman Y.G., Adriaansen A.P.M., Thin Solid Films, 169 (1989), 241.10.1016/0040-6090(89)90707-4Search in Google Scholar

[15] Egashira Y., Kim H.J., Komiyama H., J. Am. Ceram. Soc., 77 (1994), 2009.10.1111/j.1151-2916.1994.tb07091.xSearch in Google Scholar

[16] Harris H., Biswas N., Temkin H., Gangopadhyay S., Strathman M., J. Appl. Phys., 90 (2001), 5825.10.1063/1.1413484Open DOISearch in Google Scholar

[17] Azema N., Durand J., Berjoan R., Dupuy C., Cot L., J. Eur. Ceram. Soc., 8 (1991), 291.10.1016/0955-2219(91)90123-HSearch in Google Scholar

[18] Gordon R.G., Hoffman D.M., Riaz U., J. Mater. Res., 6 (1991), 5.10.1557/JMR.1991.0005Search in Google Scholar

[19] Dupuie J.L., Gulari E., J. Vac. Sci. Technol. A, 10 (1992), 18.10.1116/1.578135Search in Google Scholar

[20] Jones A.C., Rushworth S.A., Houlton D.J., Roberts J.S., Roberts V., Whitehouse C.R., Critchlow G.W., Chem. Vapor Deposit, 2 (1996), 5.10.1002/cvde.19960020102Search in Google Scholar

[21] Roberts V., Roberts J.S., Jones A.C., Rushworth S., In MRS online proceedings, Cambridge University Press, London, 1995, p. 395.10.1557/PROC-395-337Search in Google Scholar

[22] Rushworth S.A., Brown J.R., Houlton D.J., Jones A.C., Roberts V., Roberts J.S., Critchlow G.W., Adv. Mater. Opt. Elec., 6 (1996), 119.10.1002/(SICI)1099-0712(199605)6:3<119::AID-AMO229>3.0.CO;2-7Search in Google Scholar

[23] Jones A.C., Auld J., Rushworth S.A., Houlton D.J., Critchlow G.W., J. Mater. Chem., 4 (1996), 1591.10.1039/jm9940401591Search in Google Scholar

[24] Wistrela E., Bittner A., Schneider M., Reissner M., Schmid U., J. Appl. Phys., 121 (2017), 115302.10.1063/1.4978748Search in Google Scholar

[25] Pan D., Jian J. K., Sun Y. F., Wu R., J. Alloy. Compd., 519 (2012), 41.10.1016/j.jallcom.2011.12.015Search in Google Scholar

[26] Xiong J., Guo P., Guo F., Sun X., Gu H., Mater. Lett., 117 (2014), 276.10.1016/j.matlet.2013.12.018Search in Google Scholar

[27] Endo Y., Sato T., Kawamura Y., Yamamoto M., Mater. Trans., 48, (2007), 465.10.2320/matertrans.48.465Open DOISearch in Google Scholar

[28] Felmetsger V.V., Mikhov M.K., 2011 IEEE Int. Ultrasonics Sympos. Proc., (2011) 835.Search in Google Scholar

[29] Molina S.I., Sanchez A.M., Pacheco F.J., Garcia R., Sánchez-Garcia M.A., Sanchez F.J., Calleja E., Appl. Phys. Lett., 74 (1999), 3362.10.1063/1.123345Open DOISearch in Google Scholar

[30] Ong Z.Y., Shanmugan S., Mutharasu D., IJETT, 17 (4), (2014), 192.Search in Google Scholar

[31] Pierson H.O., Handbook of chemical vapor deposition: principles, technology and applications, William Andrew Publishing, New York, 1999.10.1016/B978-081551432-9.50005-XSearch in Google Scholar

[32] Song J.H., Huang J.L., Lu H.H., Sung J.C., Thin Solid Films, 516 (2007), 223.10.1016/j.tsf.2007.07.167Search in Google Scholar

[33] Witthaut M., Cremer R., Reichert K., Neuschütz D., Thin Solid Films, 377 (2000), 478.10.1016/S0040-6090(00)01435-8Search in Google Scholar

[34] Gordillo G., Flrez J.M., Hernandez L.C., Sol. Energ. Mat. Sol. C., 37 (1995), 273.Search in Google Scholar

[35] Perry A.J., J. Vac. Sci. Tech. A, 8 (1990), 1351.Search in Google Scholar

[36] Gerlich D., Dole S.L., Slack G.A., J. Phys. Chem. Solids, 47 (1986), 437.10.1016/0022-3697(86)90039-9Open DOISearch in Google Scholar

[37] http://www.ioffe.ru/SVA/NSM/Semicond/BN/mechanic.html, accessed on: 08.13.2014.Search in Google Scholar

[38] Thokala R., Chaudhuri J., Thin Solid Films, 266 (1995), 189.10.1016/0040-6090(96)80022-8Search in Google Scholar

[39] Stokes A.R., Wilson A.C.J., Proc. Phys. Soc., 56 (1944), 174.10.1088/0959-5309/56/3/303Search in Google Scholar

[40] Pal U., Samanta D., Ghoral S., Samantaray B.K., Chaudhuri A.K., J. Phys. D: Appl. Phys., 25 (1992), 1488.10.1088/0022-3727/25/10/014Search in Google Scholar

[41] Cullity B.D., Elements of X-ray Diffraction, 2nd ed., Addition-Wesley, London, 1978.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo