Open Access

Optimization of fermentation condition for cellulase enzyme production from Bacillus sp.


Cite

[1] F.B. Armstrong, “Biochemistry”, 2nd Ed. Oxford University press, New York-Oxford, 1983.Search in Google Scholar

[2] P. Brodelius, E.J. Vandamme, H.J. Rehm, and G. Reed, “Em Biotechnology volume 7a”, Enzyme Technology, 1987.Search in Google Scholar

[3] P. Nigam, and K.A. Prabhu, “Effect of cultural factors on cellulase biosynthesis in submerged bagasse fermentation by basidiomycetes cultures”, Journal of basic microbiology, Vol. 31(4), 285-292, 1991. doi:10.1002/jobm.362031041110.1002/jobm.3620310411Open DOISearch in Google Scholar

[4] A. Pandey, P. Selvakumar, C.R. Soccol, and P. Nigam, “Solid state fermentation for the production of industrial enzymes”, Current science, 149-162, 1999.Search in Google Scholar

[5] E. Hardiman, M. Gibbs, R. Reeves, and P. Bergquist, “Directed evolution of a thermophilic β-glucosidase for cellulosic bioethanol production”, Applied biochemistry and biotechnology, Vol. 161(1-8), 301-312, 2010. doi:10.1007/s12010-009-8794-610.1007/s12010-009-8794-619834652Open DOISearch in Google Scholar

[6] G. Immanuel, R. Dhanusha, P. Prema, and A. Palavesam, “Effect of different growth parameters on endoglucanase enzyme activity by bacteria isolated from coir retting effluents of estuarine environment”, International Journal of Environmental Science & Technology, Vol. 3(1), 25-34, 2006. doi:10.1007/bf0332590410.1007/BF03325904Open DOISearch in Google Scholar

[7] T.K. Ghose, “Measurement of cellulose activities”, Pure appl.chem., Vol. 59: 257-268, 1987.10.1351/pac198759020257Search in Google Scholar

[8] S. Nagendran, H.E. Hallen-Adams, J.M. Paper, N. Aslam, and J.D. Walton, “Reduced genomic potential for secreted plant cell-wall-degrading enzymes in the ectomycorrhizal fungus Amanita bisporigera, based on the secretome of Trichoderma reesei”, Fungal Genetics and Biology, Vol. 46(5), 427-435, 2009. doi: 10.1016/j.fgb.2009.02.00110.1016/j.fgb.2009.02.00119373972Search in Google Scholar

[9] G.L. Miller, “Use of dinitrosalicylic acid reagent for determination of reducing sugar”, Analytical chemistry, Vol. 31(3), 426-428, 1959. DOI: 10.1021/ac60147a03010.1021/ac60147a030Open DOISearch in Google Scholar

[10] K.I. Jo, Y.J. Lee, B.K. Kim, B.H. Lee, C.H. Chung, S.W. Nam, and J.W. Lee, “Pilot-scale production of carboxymethylcellulase from rice hull by Bacillus amyloliquefaciens DL-3”, Biotechnology and Bioprocess Engineering, Vol. 13(2), 182, 2008. doi:10.1007/s12257-007-0149-y10.1007/s12257-007-0149-ySearch in Google Scholar

[11] L. Mayende, B.S. Wilhelmi, and B.I. Pletschke, “Cellulases (CMCases) and polyphenol oxidases from thermophilic Bacillus spp. isolated from compost, Soil Biology and Biochemistry, Vol. 38(9), 2963-2966, 2006. doi:10.1016/j.soilbio.2006.03.01910.1016/j.soilbio.2006.03.019Open DOISearch in Google Scholar

[12] B.K. Kim, B.H. Lee, Y.J. Lee, I.H. Jin, C.H. Chung, and J.W. Lee, “Purification and characterization of carboxymethylcellulase isolated from a marine bacterium, Bacillus subtilis subsp. subtilis A-53”, Enzyme and Microbial Technology, Vol. 44(6-7), 411-416, 2009. doi:10.1016/j.enzmictec.2009.02.00510.1016/j.enzmictec.2009.02.005Open DOISearch in Google Scholar

[13] S. Shanmughapriya, G.S. Kiran, J. Selvin, T.A. Thomas, and C. Rani, “Optimization, purification, and characterization of extracellular mesophilic alkaline cellulase from sponge-associated Marinobacter sp. MSI032”, Applied biochemistry and biotechnology, 162(3), 625-640, 2010. doi:10.1007/s12010-009-8747-010.1007/s12010-009-8747-019711200Open DOISearch in Google Scholar

[14] K. Kathiresan, and S. Manivannan, “α-Amylase production by Penicillium fellutanum isolated from mangrove rhizosphere soil”, African journal of Biotechnology, 5(10), 2006.10.3923/jm.2006.438.442Search in Google Scholar

[15] J. Singh, N. Batra, and R.C. Sobti, “Purification and characterisation of alkaline cellulase produced by a novel isolate, Bacillus sphaericus JS1”, Journal of Industrial Microbiology and Biotechnology, Vol. 31(2), 51-56, 2004. doi:10.1007/s10295-004-0114-010.1007/s10295-004-0114-0Open DOISearch in Google Scholar

[16] J.Y. Kim, S.H. Hur, and J.H. Hong, “Purification and characterization of an alkaline cellulase from a newly isolated alkalophilic Bacillus sp. HSH-810”, Biotechnology letters, Vol. 27(5), 313-316, 2005. doi:10.1007/s10529-005-0685-510.1007/s10529-005-0685-5Open DOISearch in Google Scholar

[17] M. Irfan, Q. Mushtaq, F. Tabssum, H.A. Shakir, and J.I. Qazi, “Carboxymethyl cellulase production optimization from newly isolated thermophilic Bacillus subtilis K-18 for saccharification using response surface methodology”, AMB Express, Vol. 7(1), 29, 2017. https://doi.org/10.1186/s13568-017-0331-310.1186/s13568-017-0331-3Open DOISearch in Google Scholar

[18] Y.H. Li, M. Ding, J. Wang, G.J. Xu, and F. Zhao, “A novel thermoacidophilic endoglucanase, Ba-EGA, from a new cellulose-degrading bacterium, Bacillus sp. AC-1”, Applied Microbiology and Biotechnology, Vol. 70(4), 430-436, 2006. doi:10.1007/s00253-005-0075-x10.1007/s00253-005-0075-xOpen DOISearch in Google Scholar

[19] C. Mawadza, R. Hatti-Kaul, R. Zvauya, and B. Mattiasson, “Purification and characterization of cellulases produced by two Bacillus strains”, Journal of biotechnology, Vol. 83(3), 177-187, 2000. doi:10.1016/s0168-1656(00)00305-910.1016/s0168-1656(00)00305-9Open DOISearch in Google Scholar

[20] Y.J. Lee, B.K. Kim, B.H. Lee, K.I. Jo, N.K. Lee, C.H. Chung, and J.W. Lee, “Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull”, Bioresource technology, Vol. 99(2), 378-386, 2008. doi:10.1016/j.biortech.2006.12.01310.1016/j.biortech.2006.12.013Open DOISearch in Google Scholar

[21] C. Ganesh Kumar, and H. Takagi, “Microbial alkaline proteases: From a bioindustrial viewpoint”, Biotechnology advances, Vol. 17(7), 561-594, 1999.10.1016/S0734-9750(99)00027-0Search in Google Scholar

[22] K.A. Abou-Taleb, W.A. Mashhoor, S.A. Nasr, M.S. Sharaf, and H.H. Abdel-Azeem, “Nutritional and environmental factors affecting cellulase production by two strains of cellulolytic Bacilli”, Australian Journal of Basic and Applied Sciences, Vol. 3(3), 2429-2436, 2009.Search in Google Scholar

[23] A.K. Ray, A. Bairagi, K.S. Ghosh, and S.K. Sen, “Optimization of fermentation conditions for cellulase production by Bacillus subtilis CY5 and Bacillus circulans TP3 isolated from fish gut”, Acta Ichthyologica et Piscatoria, Vol. 1(37), 47-53, 2007. DOI: 10.3750/AIP2007.37.1.0710.3750/AIP2007.37.1.07Open DOISearch in Google Scholar

[24] H. Ariffin, N. Abdullah, U.K. Md Shah, Y. Shirai, and M.A. Hassan, “Production and characterization of cellulases by Bacillus pumilus EB3”, International Journal of Engineering and Technology, Vol. 3(1), 47-53, 2006.Search in Google Scholar

[25] L.L. Lin, C.C. Chyau, and W.H. Hsu, “Production and properties of a raw-starch-degrading amylase from the thermophilic and alkaliphilic Bacillus sp. TS-23”, Biotechnology and applied biochemistry, Vol. 28(1), 61-68, 1998.10.1111/j.1470-8744.1998.tb00513.xSearch in Google Scholar

[26] A. Aygan, B. Arikan, H. Korkmaz, S. Dincer, and O. Colak, “Highly thermostable and alkaline cellulase from Halotolerant-alkaliphilic Bacillus sp. AB 68”, Braz. J. Microbiol., Vol. 39:547-553, 2008.10.1590/S1517-83822008000300027Search in Google Scholar

eISSN:
2616-1923
Language:
English