1. bookVolume 12 (2021): Issue 1 (May 2021)
Journal Details
License
Format
Journal
eISSN
2336-3037
First Published
16 Apr 2017
Publication timeframe
1 time per year
Languages
English
access type Open Access

Simulation of Autonomous Mobility of Connected Vehicles in the Context of Real Conditions – a Case Study

Published Online: 04 Dec 2021
Page range: 226 - 237
Received: 10 Nov 2021
Accepted: 25 Nov 2021
Journal Details
License
Format
Journal
eISSN
2336-3037
First Published
16 Apr 2017
Publication timeframe
1 time per year
Languages
English
Abstract

By designing road infrastructure, it is necessary to adapt the real situation to current development trends and respond accordingly to the intensity of traffic on the transport network. The development of the traffic situation is generally very dynamic, difficult to predict and influenced by a number of other factors. Modern technologies enable adaptive traffic flow management based on the sharing and evaluation of traffic information obtained in real time from traffic monitoring systems or even from vehicles as such (e.g. thanks to “Connected Vehicles” technology). The article first carries out a literature review of professional literature and scientific articles dealing with the issue of autonomous mobility and autonomous management of transport processes. That is followed by a description and creation of own algorithm for autonomous control of vehicles at the level crossing, including description of used data, methods and proposed solutions. Finally, the developed method (algorithm) is tested by the Anylogic simulation program in a real environment, as a case study of autonomous vehicle decision-making at the level crossing.

Keywords

[1] Guler, S.I., Menendez, M. & Meier, L. (2014). Using Connected Vehicle Technology to Improve the Efficiency of Intersections. Transportation Research Part C: Emerging Technologies. 46, 121-131. DOI: 10.1016/j.trc.2014.05.008.10.1016/j.trc.2014.05.008 Search in Google Scholar

[2] Maslekar, N., Mouzna, J. Boussedjra, M. & Labiod, H. (2013). CATS: An Adaptive Traffic Signal System Based on Car-to-Car Communication. Journal of Network and Computer Applications 36(5), 1308-1315. DOI: 10.1016/j.jnca.2012.05.011.10.1016/j.jnca.2012.05.011 Search in Google Scholar

[3] Younes, M.B. & Boukerche, A. (2016). Intelligent Traffic Light Controlling Algorithms Using Vehicular Networks. IEEE Trans Veh. Technol. 65, 5887–5899. DOI:10.1109/TVT.2015.2472367.10.1109/TVT.2015.2472367 Search in Google Scholar

[4] Nafi, N.S. & Khan, J.Y. (2012). A VANET Based Intelligent Road Traffic Signalling System. In Proceedings of the Telecommunication Networks and Applications Conference, 7–9 November 2012, Brisbane, QLD, Australia. DOI:10.1109/ATNAC.2012.6398066.10.1109/ATNAC.2012.6398066 Search in Google Scholar

[5] Jennings, N.R., Sycara, K. & Wooldridge, M.A. (1998). Roadmap of Agent Research and Development. Auton. Agents Multi-Agent Syst. 1998, 1, 7–38. DOI:10.1023/A:1010090405266.10.1023/A:1010090405266 Search in Google Scholar

[6] Kari, D., Wu, G. & Barth, M.J. (2014). Development of an Agent-based Online Adaptive Signal Control Strategy Using Connected Vehicle Technology. In Proceedings of the IEEE International Conference on Intelligent Transportation Systems, 8–11 October 2014, Qingdao, China. DOI:10.1109/ITSC.2014.6957954.10.1109/ITSC.2014.6957954 Search in Google Scholar

[7] Ezawa, H. & Mukai, N. (2010). Adaptive Traffic Signal Control Based on Vehicle Route Sharing by Wireless Communication; Springer: Berlin/Heidelberg, Germany, 280–289. DOI:10.3390/info8030101.10.3390/info8030101 Search in Google Scholar

[8] Xiang, J. & Chen, Z. (2016). An Adaptive Traffic Signal Coordination Optimization Method Based on Vehicle-to-Infrastructure Communication. Cluster Comput., 19, 1–12. DOI:10.1007/s10586-016-0620-7.10.1007/s10586-016-0620-7 Search in Google Scholar

[9] Caban, J., Droździel, P., Krzywonos, L., Rybicka, I.K., Šarkan, B. & Vrábel, J. (2019). Statistical Analyses of Selected Maintenance Parameters of Vehicles of Road Transport Companies. Advances in Science and Technology Research Journal, 13(1), 1-13. DOI: 10.12913/22998624/92106.10.12913/22998624/92106 Search in Google Scholar

[10] Lizbetin, J., Stopka, O. & Kurenkov, P.V. (2019). Declarations Regarding the Energy Consumption and Emissions of the Greenhouse Gases in the road Freight Transport Sector. The Archives of Automotive Engineering – Archiwum Motoryzacji, 83(1), 59-72. DOI: 10.14669/AM.VOL83.ART4. Search in Google Scholar

[11] Fedorko, G., Heinz, D., Molnár, V. & Brenner, T. (2020). Use of Mathematical Models and Computer Software for Analysis of Traffic Noise. Open Engineering, 10(1), 129-139. DOI: 10.1515/eng-2020-0021.10.1515/eng-2020-0021 Search in Google Scholar

[12] Jurkovič, M., Kalina, T., Skrúcaný, T., Gorzelańczyk, P. & Ľupták, V. (2020). Environmental Impacts of Introducing LNG as Alternative Fuel For Urban Buses – Case Study in Slovakia. Promet - Traffic - Traffico, 32(6), 837-847. DOI:10.7307/ptt.v32i6.3564.10.7307/ptt.v32i6.3564 Search in Google Scholar

[13] Maghrour Zefreh, M. & Török, A. (2020). Distribution of Traffic Speed in Different Traffic Conditions: An Empirical Study in Budapest. Transport 35.1, 68-86. DOI: 10.3846/2019.11725. Search in Google Scholar

[14] Stopka, O., Sarkan, B., Chovancova, M. & Kapustina, L.M. (2017). Determination of the Appropriate Vehicle Operating in Particular Urban Traffic Conditions. Communications Scientific Letters of University of Zilina 19.2, 18-22. Retrieved October, 11, 2021, from http://komunikacie.uniza.sk/index.php/communications/article/view/17610.26552/com.C.2017.2.18-22 Search in Google Scholar

[15] Lupták, V., Hlatká, M. & Kampf, R. (2018). Energy Consumption and Greenhouse Gases Emissions on Relation Brno-Jihlava. Paper presented at the MATEC Web of Conferences, 235,3-9. DOI: 10.1051/matecconf/201823500011.10.1051/matecconf/201823500011 Search in Google Scholar

[16] To, C.N., Milani, S., Marzbani, H. & Jazar, R. N. (2021). Improvement of the Autodriver Algorithm for Autonomous Vehicles Using Roll Dynamics. The Archives of Automotive Engineering – Archiwum Motoryzacji, 91(1), 5-23. DOI: 10.14669/AM.VOL91.ART1. Search in Google Scholar

[17] Stopka, O., Zitricky, V., Abramovic, B., Marinov, M. & Ricci, S. (2019). Innovative Technologies for Sustainable Passenger Transport. Journal of Advanced Transportation, vol. 2019, article ID 4197246, 2 pages, DOI: 10.1155/2019/4197246.10.1155/2019/4197246 Search in Google Scholar

[18] Török, Á., Szalay, Z., Uti, G. & Verebélyi, B.(2020). Rerepresenting Autonomated Vehicles in a Macroscopic Transportation Model. Periodica Polytechnica Transport Engineering 48.3, 269-275. ISSN 2352-1465. Search in Google Scholar

[19] Caban, J. (2021). Study of eco-driving possibilities in passenger car used in urban traffic. The Archives of Automotive Engineering – Archiwum Motoryzacji 91(1), 37-48. DOI: 10.14669/AM.VOL91.ART3. Search in Google Scholar

[20] Zitrický, V., Gašparík, J. & Pečený, L. (2015). The Methodology of Rating Quality Standards in the Regional Passenger Transport. Transport Problems 10, 59-72. DOI: 10.21307/tp-2015-062.10.21307/tp-2015-062 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo