Early thrombus detection in ECMO with optimized impedance measurements: A simulative study
, , and
Jul 01, 2025
About this article
Published Online: Jul 01, 2025
Page range: 80 - 88
Received: Feb 20, 2025
DOI: https://doi.org/10.2478/joeb-2025-0011
Keywords
© 2025 Filip Slapal et al., published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8:

Figure 9:

Figure 10:

Figure 11:

Figures of merit chosen for position optimization NN training_
Feature | Explanation |
---|---|
∆V |
Overview of the FEM model component properties_
Part | Conductivity | Characteristics |
---|---|---|
BG | 6.62 × 10−1 S·m−1 | 9 × 9 × 5 cm |
Clot | 6.62 × 10−2 S·m−1 | Spherical targets |
SG | 1 ×10−6 S·m−1 | Rod diameter 0.4 cm |
Overview of measurement-selection methods and counts_
Maximization | Number of measurements |
---|---|
Parallelotope volume | 144 |
L1-norm | 32 |
L2-norm | 32 |
Overview of layers for an electrode position optimization NN_
# | Layer type | Layer information |
1 | input layer | 3-element vector |
2 | FC layer | 254 neurons |
3 | ReLU layer | activation layer |
4 | FC layer | 203 neurons |
5 | ReLU layer | activation layer |
6 | FC layer | 48 neurons |
7 | regression layer | determine positions |
Overview of layers for a thrombus detection NN_
# | Layer type | Layer information |
---|---|---|
1 | input layer | 208-element vector |
2 | FC layer | 200 neurons |
3 | ReLU layer | activation layer |
4 | FC layer | 100 neurons |
5 | ReLU layer | activation layer |
6 | FC layer | 2 neurons |
7 | softmax layer | to probabilities |
8 | classification layer | more probable class |