Uneingeschränkter Zugang

Early thrombus detection in ECMO with optimized impedance measurements: A simulative study

, ,  und   
01. Juli 2025

Zitieren
COVER HERUNTERLADEN

Figure 1:

’HLS Module Advanced’ oxygenator by Maquet Cardiopulmonary GmbH (Rastatt, Germany).
’HLS Module Advanced’ oxygenator by Maquet Cardiopulmonary GmbH (Rastatt, Germany).

Figure 2:

The generated FEM model of the oxygenator with a sample electrode array (depicted in green) and separation grid (depicted in blue). Red is used to number visualized electrodes.
The generated FEM model of the oxygenator with a sample electrode array (depicted in green) and separation grid (depicted in blue). Red is used to number visualized electrodes.

Figure 3:

A sample generated electrode array with highlighted radials.
A sample generated electrode array with highlighted radials.

Figure 4:

Examples of electrode pairs for inter-plane and intra-plane sensing.
Examples of electrode pairs for inter-plane and intra-plane sensing.

Figure 5:

Targets for NN training data generation in red and separation grid in blue.
Targets for NN training data generation in red and separation grid in blue.

Figure 6:

3D thrombus occurrence likelihood distribution with a sample set of generated thrombi.
3D thrombus occurrence likelihood distribution with a sample set of generated thrombi.

Figure 7:

Time course of loss for electrode array optimization NN training.
Time course of loss for electrode array optimization NN training.

Figure 8:

Electrode array for optimal feature values (left) and adjusted electrode array (right).
Electrode array for optimal feature values (left) and adjusted electrode array (right).

Figure 9:

Information about spatial arrangement of used pairs of the adjusted electrode array.
Information about spatial arrangement of used pairs of the adjusted electrode array.

Figure 10:

Time course of accuracy for thrombus detection NN training.
Time course of accuracy for thrombus detection NN training.

Figure 11:

Confusion matrix for the thrombus-detection NN. Class #1 corresponds to thrombi not present and class #2 corresponds to thrombi present.
Confusion matrix for the thrombus-detection NN. Class #1 corresponds to thrombi not present and class #2 corresponds to thrombi present.

Figures of merit chosen for position optimization NN training_

Feature Explanation
medianJminJ \[\frac{medianJ}{\min J}\] J homogeneity
maxσkminσk \frac{\text{max} \sigma_{k}}{\text{min} \sigma_{k}} J condition number
medianΔVminΔV \frac{\text{median} \Delta \text{V}}{min \Delta \text{V}} ∆Vr measurement homogeneity

Overview of the FEM model component properties_

Part Conductivity Characteristics
BG 6.62 × 10−1 S·m−1 9 × 9 × 5 cm
Clot 6.62 × 10−2 S·m−1 Spherical targets
SG 1 ×10−6 S·m−1 Rod diameter 0.4 cm

Overview of measurement-selection methods and counts_

Maximization Number of measurements
Parallelotope volume 144
L1-norm 32
L2-norm 32

Overview of layers for an electrode position optimization NN_

# Layer type Layer information
1 input layer 3-element vector
2 FC layer 254 neurons
3 ReLU layer activation layer
4 FC layer 203 neurons
5 ReLU layer activation layer
6 FC layer 48 neurons
7 regression layer determine positions

Overview of layers for a thrombus detection NN_

# Layer type Layer information
1 input layer 208-element vector
2 FC layer 200 neurons
3 ReLU layer activation layer
4 FC layer 100 neurons
5 ReLU layer activation layer
6 FC layer 2 neurons
7 softmax layer to probabilities
8 classification layer more probable class
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
1 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Bioingenieurwesen, Biomedizinische Elektronik, Biologie, Biophysik, Medizin, Biomedizinische Technik, Physik, Spektroskopie und Metrologie