This work is licensed under the Creative Commons Attribution 4.0 International License.
Brodie D, Slutsky AS, and Combes A. Extracorporeal Life Support for Adults With Respiratory Failure and Related Indications: A Review. JAMA 2019 Aug; 322:557. DOI: 10.1001/jama.2019.9302BrodieDSlutskyASCombesAExtracorporeal Life Support for Adults With Respiratory Failure and Related Indications: A ReviewJAMA.2019Aug32255710.1001/jama.2019.9302Open DOISearch in Google Scholar
Teijeiro-Paradis R, Gannon WD, and Fan E. Complications Associated With Venovenous Extracorporeal Membrane Oxygenation—What Can Go Wrong? Critical Care Medicine 2022 Sep; 50:1809–18. DOI: 10.1097/CCM.0000000000005673Teijeiro-ParadisRGannonWDFanEComplications Associated With Venovenous Extracorporeal Membrane Oxygenation—What Can Go Wrong?Critical Care Medicine2022Sep5018091810.1097/CCM.0000000000005673Open DOISearch in Google Scholar
Iannattone PA, Yang SS, Koolian M, Wong EG, and Lipes J. Incidence of Venous Thromboembolism in Adults Receiving Extracorporeal Membrane Oxygenation: A Systematic Review. ASAIO Journal 2022 Mar; 68:1523–8. DOI: 10.1097/MAT.0000000000001694IannattonePAYangSSKoolianMWongEGLipesJIncidence of Venous Thromboembolism in Adults Receiving Extracorporeal Membrane Oxygenation: A Systematic ReviewASAIO Journal2022Mar681523810.1097/MAT.0000000000001694Open DOISearch in Google Scholar
Dornia C, Philipp A, Bauer S, Lubnow M, Müller T, Lehle K, Schmid C, Müller-Wille R, Wiggermann P, Stroszczynski C, and Schreyer AG. Analysis of Thrombotic Deposits in Extracorporeal Membrane Oxygenators by Multidetector Computed Tomography. ASAIO Journal 2014 Nov; 60:652–6. DOI: 10.1097/MAT.0000000000000133DorniaCPhilippABauerSLubnowMMüllerTLehleKSchmidCMüller-WilleRWiggermannPStroszczynskiCSchreyerAGAnalysis of Thrombotic Deposits in Extracorporeal Membrane Oxygenators by Multidetector Computed TomographyASAIO Journal2014Nov60652610.1097/MAT.0000000000000133Open DOISearch in Google Scholar
Türkmen M, Lauwigi T, Fechter T, Gries F, Fischbach A, Gries T, Rossaint R, Bleilevens C, and Winnersbach P. Bioimpedance Analysis as Early Predictor for Clot Formation Inside a Blood-Perfused Test Chamber: Proof of Concept Using an In Vitro Test-Circuit. Biosensors 2023 Mar; 13:394. DOI: 10.3390/bios13030394TürkmenMLauwigiTFechterTGriesFFischbachAGriesTRossaintRBleilevensCWinnersbachPBioimpedance Analysis as Early Predictor for Clot Formation Inside a Blood-Perfused Test Chamber: Proof of Concept Using an In Vitro Test-CircuitBiosensors2023Mar1339410.3390/bios13030394Open DOISearch in Google Scholar
Gelfan S and Quigley JP. Conductivity of blood during coagulation. American Journal of Physiology-Legacy Content 1930 Sep; 94:531–4. DOI: ajplegacy.1930.94.3.531GelfanSQuigleyJPConductivity of blood during coagulationAmerican Journal of Physiology-Legacy Content1930Sep945314ajplegacy.1930.94.3.531Open DOISearch in Google Scholar
Noshiro M, Nebuya S, Fujimaki A, Smallwood R, and Brown B. Frequency characteristics of the electrical conductivity in normal and coagulated blood. IFMBE Proceedings. Springer Berlin Heidelberg, 2007 :70–2. DOI: 10.1007/978-3-540-73841-1_21NoshiroMNebuyaSFujimakiASmallwoodRBrownBFrequency characteristics of the electrical conductivity in normal and coagulated bloodIFMBE ProceedingsSpringer Berlin Heidelberg200770210.1007/978-3-540-73841-1_21Open DOISearch in Google Scholar
Sapkota A, Fuse T, Seki M, Maruyama O, Sugawara M, and Takei M. Application of electrical resistance tomography for thrombus visualization in blood. Flow Measurement and Instrumentation 2015 Dec; 46:334–40. DOI: j.flowmeasinst.2015.06.023SapkotaAFuseTSekiMMaruyamaOSugawaraMTakeiMApplication of electrical resistance tomography for thrombus visualization in bloodFlow Measurement and Instrumentation2015Dec4633440j.flowmeasinst.2015.06.023Open DOISearch in Google Scholar
Chen H, Yao J, Yang L, Liu K, Chen B, Li J, and Takei M. Development of a Portable Electrical Impedance Tomography Device for Online Thrombus Detection in Extracorporeal-Circulation Equipment. IEEE Sensors Journal 2021 Feb; 21:3653–9. DOI: 10.1109/JSEN.2020.3022078ChenHYaoJYangLLiuKChenBLiJTakeiMDevelopment of a Portable Electrical Impedance Tomography Device for Online Thrombus Detection in Extracorporeal-Circulation EquipmentIEEE Sensors Journal2021Feb213653910.1109/JSEN.2020.3022078Open DOISearch in Google Scholar
Hathcock JJ. Flow Effects on Coagulation and Thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology 2006 Aug; 26:1729–37. DOI: 10.1161/01.ATV.0000229658.76797.30HathcockJJFlow Effects on Coagulation and ThrombosisArteriosclerosis, Thrombosis, and Vascular Biology2006Aug2617293710.1161/01.ATV.0000229658.76797.30Open DOISearch in Google Scholar
Istuk N, Gioia AL, Benchakroun H, Lowery A, Mc-Dermott B, and O’Halloran M. Relationship Between the Conductivity of Human Blood and Blood Counts. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology 2022 Jun; 6:184–90. DOI: 10.1109/JERM.2021.3130788IstukNGioiaALBenchakrounHLoweryAMc-DermottBO’HalloranMRelationship Between the Conductivity of Human Blood and Blood CountsIEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology2022Jun61849010.1109/JERM.2021.3130788Open DOISearch in Google Scholar
Baumgartner C, Hasgall PA, Di Gennaro F, Neufeld E, Lloyd B, Gosselin MC, Payne D, Klingenböck A, and Kuster N. IT’IS Database for Thermal and Electromagnetic Parameters of Biological Tissues, Version 4.2. 2024BaumgartnerCHasgallPADi GennaroFNeufeldELloydBGosselinMCPayneDKlingenböckAKusterNIT’IS Database for Thermal and Electromagnetic Parameters of Biological Tissues, Version 4.22024Search in Google Scholar
Adler A and Lionheart WRB. Uses and abuses of EIDORS: an extensible software base for EIT. Physiological Measurement 2006 Apr; 27:S25–S42. DOI: 10 .1088/0967-3334/27/5/S03AdlerALionheartWRBUses and abuses of EIDORS: an extensible software base for EITPhysiological Measurement2006Apr27S25S4210.1088/0967-3334/27/5/S03Open DOISearch in Google Scholar
Onsager C, Wang C, Costakis C, Aygen C, Lang L, Lee S van der, and Grayson MA. Sensitivity Analysis for Optimizing Electrical Impedance Tomography Protocols. 2021. DOI: 10.48550/arXiv.2111.01397OnsagerCWangCCostakisCAygenCLangLLeeS van derGraysonMASensitivity Analysis for Optimizing Electrical Impedance Tomography Protocols202110.48550/arXiv.2111.01397Open DOISearch in Google Scholar
Korte J, Lauwigi T, Herzog L, Theißen A, Suchorski K, Strudthoff LJ, Focke J, Jansen SV, Gries T, Rossaint R, Bleilevens C, and Winnersbach P. Prediction of Thrombus Formation within an Oxygenator via Bioimpedance Analysis. Biosensors 2024 Oct; 14:511. DOI: 10.3390/bios14100511KorteJLauwigiTHerzogLTheißenASuchorskiKStrudthoffLJFockeJJansenSVGriesTRossaintRBleilevensCWinnersbachPPrediction of Thrombus Formation within an Oxygenator via Bioimpedance AnalysisBiosensors2024Oct1451110.3390/bios14100511Open DOISearch in Google Scholar
Smyl D and Liu D. Optimizing Electrode Positions in 2-D Electrical Impedance Tomography Using Deep Learning. IEEE Transactions on Instrumentation and Measurement 2020 Sep; 69:6030–44. DOI: 10.1109/TIM.2020.2970371SmylDLiuDOptimizing Electrode Positions in 2-D Electrical Impedance Tomography Using Deep LearningIEEE Transactions on Instrumentation and Measurement2020Sep6960304410.1109/TIM.2020.2970371Open DOISearch in Google Scholar
Silva D, Leonhardt S, and Antink CH. Copula-Based Data Augmentation on a Deep Learning Architecture for Cardiac Sensor Fusion. IEEE Journal of Biomedical and Health Informatics 2021 Jul; 25:2521–32. DOI: 10.1109/JBHI.2020.3040551SilvaDLeonhardtSAntinkCHCopula-Based Data Augmentation on a Deep Learning Architecture for Cardiac Sensor FusionIEEE Journal of Biomedical and Health Informatics2021Jul2525213210.1109/JBHI.2020.3040551Open DOISearch in Google Scholar
Rixen J, Blass N, Lyra S, and Leonhardt S. Comparison of Machine Learning Classifiers for the Detection of Breast Cancer in an Electrical Impedance Tomography Setup. Algorithms 2023; 16. DOI: 10.3390/a16110517RixenJBlassNLyraSLeonhardtSComparison of Machine Learning Classifiers for the Detection of Breast Cancer in an Electrical Impedance Tomography SetupAlgorithms20231610.3390/a16110517Open DOISearch in Google Scholar