Cite

Iswanto et al., “PID-based with Odometry for Trajectory Tracking Control on Four-wheel Omnidirectional COVID-19 Aromatherapy Robot,” Emerg. Sci. J., vol. 5, pp. 157–181, Nov. 2021, doi: 10.28991/esj-2021-SPER-13. Iswanto “PID-based with Odometry for Trajectory Tracking Control on Four-wheel Omnidirectional COVID-19 Aromatherapy Robot,” Emerg. Sci. J. 5 157 181 Nov. 2021 10.28991/esj-2021-SPER-13 Open DOISearch in Google Scholar

G. M. Andaluz, P. Leica, M. Herrera, L. Morales, and O. Camacho, “Hybrid Controller based on Null Space and Consensus Algorithms for Mobile Robot Formation,” Emerg. Sci. J., vol. 6, no. 3, pp. 429–447, Apr. 2022, doi: 10.28991/ESJ-2022-06-03-01. AndaluzG. M. LeicaP. HerreraM. MoralesL. CamachoO. “Hybrid Controller based on Null Space and Consensus Algorithms for Mobile Robot Formation,” Emerg. Sci. J. 6 3 429 447 Apr. 2022 10.28991/ESJ-2022-06-03-01 Open DOISearch in Google Scholar

K. Othman, “Multidimension Analysis of Autonomous Vehicles: The Future of Mobility,” Civ. Eng. J., vol. 7, pp. 71–93, Mar. 2022, doi: 10.28991/CEJ-SP2021-07-06. OthmanK. “Multidimension Analysis of Autonomous Vehicles: The Future of Mobility,” Civ. Eng. J. 7 71 93 Mar. 2022 10.28991/CEJ-SP2021-07-06 Open DOISearch in Google Scholar

X. Dauptain, A. Koné, D. Grolleau, V. Cerezo, M. Gennesseaux, and M.-T. Do, “Conception of a High-Level Perception and Localization System for Autonomous Driving,” Sensors, vol. 22, no. 24, p. 9661, Dec. 2022, doi: 10.3390/s22249661. DauptainX. KonéA. GrolleauD. CerezoV. GennesseauxM. DoM.-T. “Conception of a High-Level Perception and Localization System for Autonomous Driving,” Sensors 22 24 9661 Dec. 2022 10.3390/s22249661 Open DOISearch in Google Scholar

J. Kocic, N. Jovicic, and V. Drndarevic, “Sensors and Sensor Fusion in Autonomous Vehicles,” in 2018 26th Telecommunications Forum (TELFOR), Nov. 2018, pp. 420–425. doi: 10.1109/TELFOR.2018.8612054. KocicJ. JovicicN. DrndarevicV. “Sensors and Sensor Fusion in Autonomous Vehicles,” in 2018 26th Telecommunications Forum (TELFOR) Nov. 2018 420 425 10.1109/TELFOR.2018.8612054 Open DOISearch in Google Scholar

J. A. Placed et al., “A Survey on Active Simultaneous Localization and Mapping: State of the Art and New Frontiers,” IEEE Trans. Robot., vol. 39, no. 3, pp. 1686–1705, Jun. 2023, doi: 10.1109/TRO.2023.3248510. PlacedJ. A. “A Survey on Active Simultaneous Localization and Mapping: State of the Art and New Frontiers,” IEEE Trans. Robot. 39 3 1686 1705 Jun. 2023 10.1109/TRO.2023.3248510 Open DOISearch in Google Scholar

G. Bresson, Z. Alsayed, L. Yu, and S. Glaser, “Simultaneous Localization and Mapping: A Survey of Current Trends in Autonomous Driving,” IEEE Trans. Intell. Veh., vol. 2, no. 3, pp. 194–220, Sep. 2017, doi: 10.1109/TIV.2017.2749181. BressonG. AlsayedZ. YuL. GlaserS. “Simultaneous Localization and Mapping: A Survey of Current Trends in Autonomous Driving,” IEEE Trans. Intell. Veh. 2 3 194 220 Sep. 2017 10.1109/TIV.2017.2749181 Open DOISearch in Google Scholar

A. Hussain, A. Ahmed, H. Magsi, and R. Tiwari, “Adaptive GNSS Receiver Design for Highly Dynamic Multipath Environments,” IEEE Access, vol. 8, pp. 172481–172497, 2020, doi: 10.1109/ACCESS.2020.3024890. HussainA. AhmedA. MagsiH. TiwariR. “Adaptive GNSS Receiver Design for Highly Dynamic Multipath Environments,” IEEE Access 8 172481 172497 2020 10.1109/ACCESS.2020.3024890 Open DOISearch in Google Scholar

T. Pire, T. Fischer, J. Civera, P. De Cristoforis, and J. J. Berlles, “Stereo parallel tracking and mapping for robot localization,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sep. 2015, pp. 1373–1378. doi: 10.1109/IROS.2015.7353546. PireT. FischerT. CiveraJ. De CristoforisP. BerllesJ. J. “Stereo parallel tracking and mapping for robot localization,” 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) Sep. 2015 1373 1378 10.1109/IROS.2015.7353546 Open DOISearch in Google Scholar

S. Safavat, N. N. Sapavath, and D. B. Rawat, “Recent advances in mobile edge computing and content caching,” Digit. Commun. Networks, vol. 6, no. 2, pp. 189–194, May 2020, doi: 10.1016/j.dcan.2019.08.004. SafavatS. SapavathN. N. RawatD. B. “Recent advances in mobile edge computing and content caching,” Digit. Commun. Networks 6 2 189 194 May 2020 10.1016/j.dcan.2019.08.004 Open DOISearch in Google Scholar

C. Cadena et al., “Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age,” IEEE Trans. Robot., vol. 32, no. 6, pp. 1309–1332, Dec. 2016, doi: 10.1109/TRO.2016.2624754. CadenaC. “Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age,” IEEE Trans. Robot. 32 6 1309 1332 Dec. 2016 10.1109/TRO.2016.2624754 Open DOISearch in Google Scholar

M. Raja, “Application of cognitive radio and interference cancellation in the l-Band based on future air-to-ground communication systems,” Digit. Commun. Networks, vol. 5, no. 2, pp. 111–120, May 2019, doi: 10.1016/j.dcan.2017.09.011. RajaM. “Application of cognitive radio and interference cancellation in the l-Band based on future air-to-ground communication systems,” Digit. Commun. Networks 5 2 111 120 May 2019 10.1016/j.dcan.2017.09.011 Open DOISearch in Google Scholar

A. R. Khairuddin, M. S. Talib, and H. Haron, “Review on simultaneous localization and mapping (SLAM),” in 2015 IEEE International Conference on Control System, Computing and Engineering (ICCSCE), Nov. 2015, pp. 85–90. doi: 10.1109/ICCSCE.2015.7482163. KhairuddinA. R. TalibM. S. HaronH. “Review on simultaneous localization and mapping (SLAM),” in 2015 IEEE International Conference on Control System, Computing and Engineering (ICCSCE) Nov. 2015 85 90 10.1109/ICCSCE.2015.7482163 Open DOISearch in Google Scholar

R. Azzam, T. Taha, S. Huang, and Y. Zweiri, “Feature-based visual simultaneous localization and mapping: a survey,” SN Appl. Sci., vol. 2, no. 2, p. 224, Feb. 2020, doi: 10.1007/s42452-020-2001-3. AzzamR. TahaT. HuangS. ZweiriY. “Feature-based visual simultaneous localization and mapping: a survey,” SN Appl. Sci. 2 2 224 Feb. 2020 10.1007/s42452-020-2001-3 Open DOISearch in Google Scholar

Y. Zhang, H. Wen, F. Qiu, Z. Wang, and H. Abbas, “iBike: Intelligent public bicycle services assisted by data analytics,” Futur. Gener. Comput. Syst., vol. 95, pp. 187–197, Jun. 2019, doi: 10.1016/j.future.2018.12.017. ZhangY. WenH. QiuF. WangZ. AbbasH. “iBike: Intelligent public bicycle services assisted by data analytics,” Futur. Gener. Comput. Syst. 95 187 197 Jun. 2019 10.1016/j.future.2018.12.017 Open DOISearch in Google Scholar

G. Chang, “On kalman filter for linear system with colored measurement noise,” J. Geod., vol. 88, no. 12, pp. 1163–1170, Dec. 2014, doi: 10.1007/s00190-014-0751-7. ChangG. “On kalman filter for linear system with colored measurement noise,” J. Geod. 88 12 1163 1170 Dec. 2014 10.1007/s00190-014-0751-7 Open DOISearch in Google Scholar

S. Pu, X. Yu, and J. Li, “Distributed Kalman filter for linear system with complex multi-channel stochastic uncertain parameter and decoupled local filters,” Int. J. Adapt. Control Signal Process., vol. 35, no. 8, pp. 1498–1512, Aug. 2021, doi: 10.1002/acs.3253. PuS. YuX. LiJ. “Distributed Kalman filter for linear system with complex multi-channel stochastic uncertain parameter and decoupled local filters,” Int. J. Adapt. Control Signal Process. 35 8 1498 1512 Aug. 2021 10.1002/acs.3253 Open DOISearch in Google Scholar

H. Xue, H. Fu, L. Xiao, Y. Fan, D. Zhao, and B. Dai, “Traversability analysis for autonomous driving in complex environment: A LiDAR-based terrain modeling approach,” J. F. Robot., Jun. 2023, doi: 10.1002/rob.22209. XueH. FuH. XiaoL. FanY. ZhaoD. DaiB. “Traversability analysis for autonomous driving in complex environment: A LiDAR-based terrain modeling approach,” J. F. Robot. Jun. 2023 10.1002/rob.22209 Open DOISearch in Google Scholar

P. Kaniewski, “Extended Kalman Filter with Reduced Computational Demands for Systems with Non-Linear Measurement Models,” Sensors, vol. 20, no. 6, p. 1584, Mar. 2020, doi: 10.3390/s20061584. KaniewskiP. “Extended Kalman Filter with Reduced Computational Demands for Systems with Non-Linear Measurement Models,” Sensors 20 6 1584 Mar. 2020 10.3390/s20061584 Open DOISearch in Google Scholar

A. Ibrahim, A. Abosekeen, A. Azouz, and A. Noureldin, “Enhanced Autonomous Vehicle Positioning Using a Loosely Coupled INS/GNSS-Based Invariant-EKF Integration,” Sensors, vol. 23, no. 13, p. 6097, Jul. 2023, doi: 10.3390/s23136097. IbrahimA. AbosekeenA. AzouzA. NoureldinA. “Enhanced Autonomous Vehicle Positioning Using a Loosely Coupled INS/GNSS-Based Invariant-EKF Integration,” Sensors 23 13 6097 Jul. 2023 10.3390/s23136097 Open DOISearch in Google Scholar

S. A. Soliman, M. H. Abdel-Rahman, and M. E. El-Hawary, “Linear Kalman filtering algorithm applied to measurements of power system voltage magnitude and frequency: A constant-frequency model,” Can. J. Electr. Comput. Eng., vol. 22, no. 4, pp. 145–153, Oct. 1997, doi: 10.1109/CJECE.1997.7101937. SolimanS. A. Abdel-RahmanM. H. El-HawaryM. E. “Linear Kalman filtering algorithm applied to measurements of power system voltage magnitude and frequency: A constant-frequency model,” Can. J. Electr. Comput. Eng. 22 4 145 153 Oct. 1997 10.1109/CJECE.1997.7101937 Open DOISearch in Google Scholar

V. Beganovic, “Extended Kalman Filter Line-Based Simultanous Localization and Mapping for Autonomous Robotics,” University of Vermont, 2022. BeganovicV. “Extended Kalman Filter Line-Based Simultanous Localization and Mapping for Autonomous Robotics,” University of Vermont 2022 Search in Google Scholar

NVIDIA, “Get Star ted With Jetson Nano Developer Kit.” https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit NVIDIA “Get Star ted With Jetson Nano Developer Kit.” https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit Search in Google Scholar

Arduino, “Arduino UNO R3.” https://docs.arduino.cc/hardware/uno-rev3 Arduino “Arduino UNO R3.” https://docs.arduino.cc/hardware/uno-rev3 Search in Google Scholar

Tamiya, “RC ESC TBLE-02S BRUSHLESS.” https://www.tamiyausa.com/shop/electronics/rc-esc-tble-02s-brushless/ Tamiya “RC ESC TBLE-02S BRUSHLESS.” https://www.tamiyausa.com/shop/electronics/rc-esc-tble-02s-brushless/ Search in Google Scholar

Waveshare, “JetRacer ROS AI Kit.” https://www.waveshare.com/wiki/JetRacer_ROS_AI_Kit Waveshare “JetRacer ROS AI Kit.” https://www.waveshare.com/wiki/JetRacer_ROS_AI_Kit Search in Google Scholar

SLAMTEC, “RPLIDAR A1.” https://www.slamtec.ai/home/rplidar_a1/ SLAMTEC “RPLIDAR A1.” https://www.slamtec.ai/home/rplidar_a1/ Search in Google Scholar

S. Nagla, “2D Hector SLAM of Indoor Mobile Robot using 2D Lidar,” in 2020 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS), Dec. 2020, pp. 1–4. doi: 10.1109/ICPECTS49113.2020.9336995. NaglaS. “2D Hector SLAM of Indoor Mobile Robot using 2D Lidar,” in 2020 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS) Dec. 2020 1 4 10.1109/ICPECTS49113.2020.9336995 Open DOISearch in Google Scholar

T. Kim and T.-H. Park, “Extended Kalman Filter (EKF) Design for Vehicle Position Tracking Using Reliability Function of Radar and Lidar,” Sensors, vol. 20, no. 15, p. 4126, Jul. 2020, doi: 10.3390/s20154126. KimT. ParkT.-H. “Extended Kalman Filter (EKF) Design for Vehicle Position Tracking Using Reliability Function of Radar and Lidar,” Sensors 20 15 4126 Jul. 2020 10.3390/s20154126 Open DOISearch in Google Scholar

eISSN:
1178-5608
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Engineering, Introductions and Overviews, other