1. bookVolume 28 (2021): Issue 1 (March 2021)
    Special Issue: ECO-TECHNOLOGY AND ECO-INNOVATION FOR GREEN SUSTAINABLE GROWTH
Journal Details
License
Format
Journal
First Published
08 Nov 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Benefit Evaluation of Energy-Saving and Emission Reduction in Construction Industry Based on Rough Set Theory

Published Online: 23 Apr 2021
Page range: 61 - 73
Journal Details
License
Format
Journal
First Published
08 Nov 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Achieving energy conservation and emission reduction in the industry is an inevitable way to promote harmony between society and nature and achieve sustainable human development. China’s infrastructure construction industry is developing rapidly. Still, there is a lack of a well-established industry standard for evaluating the potential and level of energy reduction in infrastructure construction. A severe lack of quantitative research on energy-saving and CO2 outflow decreases the benefits of green development advances. This study takes the energy conservation and outflow decrease of construction waste slurry treatment in Guangdong Province, China, as the background, establishes an evaluation system with three rule levels: social, economic, and environmental, and adopts rough set theory to determine the weights of each index to ensure the objectivity of each index. According to the recommendations of the carbon emission calculation guidelines, select the relevant data to evaluate the energy-saving and emission reduction benefits of the new green construction technology of grouted piles in a road project in Guangdong Province. The results show that the development level and potential of energy saving and emission reduction technology in the construction sector in Guangdong Province are increasing year by year. It’s potential changes with the increase or decrease of highway mileage, and it is an urgent need to increase investment in pollution control. The research results can evaluate the benefits of energy-saving and carbon dioxide emission reduction in the construction industry, also be used as a reference to assess energy-saving and emission reduction in the construction industry in other countries.

Keywords

[1] Zhang H, Chen J, Li Y, Seiler MJ. Does the Development of China’s Building Industry Influence the Global Energy Consumption and Carbon Emissions? an Analysis Based on the GVAR Model. Singapore: Springer; 2018. DOI: 10.1007/978-981-10-6190-5_58. Search in Google Scholar

[2] Governments, USaC. U.S.-China Joint Announcement on Climate Change. 2014. Available from: https://obamawhitehouse.archives.gov/the-press-office/2014/11/11/us-china-joint-announcement-climate-change. Search in Google Scholar

[3] Jiang J, Ye B, Liu J. Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research. Renew Sust Energy Rev. 2019;112:813-33. DOI: 10.1016/j.rser.2019.06.024. Search in Google Scholar

[4] IPCC (2008). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Available from: https://www.ipcc.ch/report/2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/. Search in Google Scholar

[5] IPCC (2019). 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Available from: https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/. Search in Google Scholar

[6] Lin BQ, Xu B. Growth of industrial CO2 emissions in Shanghai city: Evidence from a dynamic vector autoregression analysis. Energy Oxford. 2018;151:167-77. DOI: 10.1016/j.energy.2018.03.052. Search in Google Scholar

[7] Wen L, Zhang X. CO2 emissions in China’s Yangtze River Economic Zone: A dynamic vector autoregression approach. Pol J Environ Stud. 2019;28:923-33. DOI: 10.15244/pjoes/83668. Search in Google Scholar

[8] Xu B, Lin BQ. What cause a surge in China’s CO2 emissions? A dynamic vector autoregression analysis. J Clean Prod. 2016;143:17-26. DOI: 10.1016/j.jclepro.2016.12.159. Search in Google Scholar

[9] Xu B, Lin BQ. Assessing CO2 emissions in China’s iron and steel industry: A dynamic vector autoregression model. Appl Energy. 2016;161:357-86. DOI: 10.1016/j.apenergy.2015.10.039. Search in Google Scholar

[10] Hao H, Geng Y, Li W, Guo B. Energy consumption and GHG emissions from China’s freight transport sector: Scenarios through 2050. Energy Policy. 2015;85:94-101. DOI: 10.1016/j.enpol.2015.05.016. Search in Google Scholar

[11] Shao S, Liu J, Geng Y, Miao Z, Yang Y. Uncovering driving factors of carbon emissions from China’s mining sector. Appl Energy. 2016;166:220-38. DOI: 10.1016/j.apenergy.2016.01.047. Search in Google Scholar

[12] Huang WL, Yin X, Chen WY. Prospective scenarios of CCS implementation in China’s power sector: An analysis with China TIMES. Energy Procedia. 2014;61:937-40. DOI: 10.1016/j.egypro.2014.11.999. Search in Google Scholar

[13] Lin B, Moubarak M, Ouyang XL. Carbon dioxide emissions and growth of the manufacturing sector: Evidence for China. Energy. 2014;76:830-7. DOI: 10.1016/j.energy.2014.08.082. Search in Google Scholar

[14] Shi Q, Chen J, Shen L. Driving factors of the changes in the carbon emissions in the Chinese construction industry. J Clean Prod. 2017;(166):615-27. DOI: 10.1016/j.jclepro.2017.08.056. Search in Google Scholar

[15] Yang T, Pan Y, Yang Y, Lin M, Qin B, Xu P, et al. CO2 emissions in China’s building sector through 2050: A scenario analysis based on a bottom-up model. Energy. 2017;128:208-23. DOI: 10.1016/j.energy.2017.03.098. Search in Google Scholar

[16] Ai F, Yin X, Hu R, Ma H, Liu W. Research into the super-absorbent polymers on agricultural water. Agr Water Manage. 2021:106513. DOI: 10.1016/j.agwat.2020.106513. Search in Google Scholar

[17] Zhang X, Zang C, Ma H, Wang Z. Study on removing calcium carbonate plug from near wellbore by high-power ultrasonic treatment. Ultrason Sonochem. 2020:104515. DOI: 10.1016/j.ultsonch.2019.03.006. Search in Google Scholar

[18] Mo L, Sun W, Jiang S, Zhao X, Ma H, Liu B, et al. Removal of colloidal precipitation plugging with high-power ultrasound. Ultrason Sonochem. 2020;69:105259. DOI: 10.1016/j.ultsonch.2020.105259. Search in Google Scholar

[19] Liu W, Ma H, Walsh A. Advance in photonic crystal solar cells. Renew Sust Energy Rev. 2019;116:109436. DOI: 10.1016/j.rser.2019.109436. Search in Google Scholar

[20] Ma H, Zhang X, Ju F, Tsai SB. A study on curing kinetics of nano-phase modified epoxy resin. Sci Rep. 2018;8. DOI: 10.1038/s41598-018-21208-0. Search in Google Scholar

[21] Ma H, Tsai SB. Design of research on performance of a new iridium coordination compound for the detection of Hg2+. Int J Env Res Pub HE. 2017;14. DOI: 10.3390/ijerph14101232. Search in Google Scholar

[22] Yang G, He XL, Li JF, Jia XJ. The research of water resource sustainable utilization in Manas River. Acta Ecologica Sinica. Available from: https://www.oalib.com/paper/1402574. Search in Google Scholar

[23] Gendron C. Beyond environmental and ecological economics: Proposal for an economic sociology of the environment. Ecol Econ. 2014;105:240-53. DOI: 10.1016/j.ecolecon.2014.06.012. Search in Google Scholar

[24] Men B, Liu H, Tian W, Liu H. Evaluation of sustainable use of water resources in Beijing based on rough set and fuzzy theory. Water. 2017;9:852. DOI: 10.3390/w10070925. Search in Google Scholar

[25] Wu X, Wen QB, Hu LM, Liu MY. Evaluation of unconventional water resources based on knowledge granularity. E3S Web Conf. 2020;144(1-3):01004. DOI: 10.1051/e3sconf/202014401004. Search in Google Scholar

[26] Pawlak Z. Rough sets. Int J Comput Inform Sci. 1982;11:341-56. DOI: 10.1007/BF01001956. Search in Google Scholar

[27] Pawlak Z. Rough classification. Int J Man Mach Stud. 1984;20:469-83. DOI: 10.1016/S0020-7373(84)80022-X. Search in Google Scholar

[28] Pawlak Z. Rough sets and intelligent data analysis. Inform Sci. 2002;147:1-12. DOI: 10.1016/S0020-0255(02)00197-4. Search in Google Scholar

[29] Pawlak Z, Skowron A. Rough sets: Some extensions. Inform Sci. 2007;177:28-40. DOI: 10.1016/j.ins.2006.06.006. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo