1. bookVolume 28 (2021): Issue 1 (March 2021)
    Special Issue: ECO-TECHNOLOGY AND ECO-INNOVATION FOR GREEN SUSTAINABLE GROWTH
Journal Details
License
Format
Journal
First Published
08 Nov 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

On Rough Set Theory on Achieving High Quality Cable Material Production by Green Low Carbon Technology

Published Online: 23 Apr 2021
Page range: 49 - 59
Journal Details
License
Format
Journal
First Published
08 Nov 2011
Publication timeframe
4 times per year
Languages
English
Abstract

As the second largest machinery industry, the energy-intensive cable industry not only creates a lot of economic value but also consumes a lot of energy. It is an inevitable requirement to promote the technological development of the industry in the new era to improve the quality and efficiency and realise industrial energy-saving and consumption reduction. In order to obtain good strength and conductivity, the metal rods of cable are usually heat-treated for several hours or even several days after the rods are extruded, this is a major energy consuming process in traditional production. Based on the background, this study adopted the energy-saving equal-channel angular pressing (ECAP) technology to replace the traditional heating treatment process, and converted the simple heat conduction with thermo-mechanical energy transfer, so as to realise the good strength and conductivity matching of the cable aluminum alloy material. In this study, energy-saving ECAP technology is used to replace the traditional heat treatment process, and heat-mechanical energy transfer is used to replace the simple heat conduction, so as to achieve good strength and conductivity matching of cable aluminum alloy material. The results show that the suitable ECAP process routes can improve the microstructure of aluminum alloy with higher strength and conductivity than the traditional heating process. The research results can be used for technology upgrading and low carbon production in cable industry due to the significantly time reduction of the energy-consuming heat treatment and the high-efficient obtainment of high-quality production.

Keywords

[1] Broniszewski M, Werle S. Energy efficiency modernizations at the industrial plant: A case study. Ecol Chem Eng S. 2020;27(2):183-93. DOI: 10.2478/eces-2020-0011. Search in Google Scholar

[2] Klugmann-Radziemska E, Rudnicka M. Energy yield generated by a small building integrated photovoltaic installation. Ecol Chem Eng S. 2020;27(3):335-46. DOI: 10.2478/eces-2020-0021. Search in Google Scholar

[3] Rodziewicz T, Zaremba A, Wacławek M. Photovoltaics: Solar energy resources and the possibility of their use. Ecol Chem Eng S. 2016;23(1):9-32. DOI: 10.1515/eces-2016-0001. Search in Google Scholar

[4] Liu T, Wang Q, Sui Y, Wang Q. Microstructure and mechanical properties of overcast 6101-6101 wrought Al alloy joint by squeeze casting. J Mater Sci Technol. 2016;32(4):298-304. DOI: 10.1016/j.jmst.2015.11.020. Search in Google Scholar

[5] Singh D, Jayaganthan R. Effect of post cryorolling treatments on microstructural and mechanical behaviour of ultrafine grained Al-Mg-Si alloy. J Mater Sci Technol. 2014;30(10):998-1005. DOI: 10.1016/j.jmst.2014.03.009. Search in Google Scholar

[6] Sabirov I, Murashkin MY, Valiev RZ. Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development. Mater Sci Eng A. 2013;560:1-24. DOI: 10.1016/j.msea.2012.09.020 Search in Google Scholar

[7] Murashkin MY, Sabirov I, Sauvage X, Valiev RZ. Nanostructured Al and Cu alloys with superior strength and electrical conductivity. Mater Sci. 2016;51(1):33-49. DOI: 10.1007/s10853-015-9354-9. Search in Google Scholar

[8] Huang X, Hansen N, Tsuji N. Hardening by annealing and softening by deformation in nanostructured metals. Science. 2006;312(5771):249-51. DOI: 10.1126/science.1124268. Search in Google Scholar

[9] Rhee H, Whittington WR, Oppedal AL, Sherif AR, King RL, Kim HJ, et al. Mechanical properties of novel aluminum metal matrix metallic composites: Application to overhead conductors. Materials Design. 2015;88:16-21. DOI: 10.1016/j.matdes.2015.08.109. Search in Google Scholar

[10] Karnesky RA, Meng L, Dunand DC. Strengthening mechanisms in aluminum containing coherent Al3Sc precipitates and incoherent Al2O3 dispersoids. Acta Materialia. 2007;55(4):1299-308. DOI: 10.1016/j.actamat.2006.10.004. Search in Google Scholar

[11] Samaee M, Najafi S, Eivani AR, Jafarian HR, Zhou J. Simultaneous improvements of the strength and ductility of fine-grained AA6063 alloy with increasing number of ECAP passes. Mater Sci Eng A. 2016;669:350-7. DOI: 10.1016/j.msea.2016.05.070. Search in Google Scholar

[12] Lin G, Zhang Z, Wang H, Zhou K, Wei Y. Enhanced strength and electrical conductivity of Al-Mg-Si alloy by thermo-mechanical treatment. Mater Sci Eng A. 2016;650:210-7. DOI: 10.1016/j.msea.2015.10.050. Search in Google Scholar

[13] Liu CH, Chen J, Lai YX, Zhu DH, Gu Y, Chen JH. Enhancing electrical conductivity and strength in Al alloys by modification of conventional thermo-mechanical process. Mater Des. 2015;87:1-5. DOI: 10.1016/j.matdes.2015.07.133. Search in Google Scholar

[14] Valiev RZ, Murashkin MY, Sabirov I. A nanostructural design to produce high-strength Al alloys with enhanced electrical conductivity. Scr Mater. 2014;76:13-6. DOI: 10.1016/j.scriptamat.2013.12.002. Search in Google Scholar

[15] Bobruk EV, Murashkin MY, Kazykhanov VU, Valiev RZ. Aging behavior and properties of ultrafine-grained aluminum alloys of Al-Mg-Si system. Rev Adv Mater Sci. 2012;31:109-15. Available from: www.ipme.ru/e-journals/RAMS/no_23112/03_23112_bobruk.html. Search in Google Scholar

[16] Cubero-Sesin JM, Arita M, Horita Z. High strength and electrical conductivity of Al-Fe alloys produced by synergistic combination of high-pressure torsion and aging. Adv Eng Mater. 2015;17(12):1792-803. DOI: 10.1002/adem.201500103. Search in Google Scholar

[17] Luo J, Gao J, Wang A, Huang J. Bulk nanostructured materials based on two-dimensional building blocks: a roadmap. ACS Nano. 2015;9(10):9432-6. DOI: 10.1021/acsnano.5b05259. Search in Google Scholar

[18] Xu C, Schroeder S, Berbon PB, Langdon TG. Principles of ECAP–Conform as a continuous process for achieving grain refinement: Application to an aluminum alloy. Acta Mater. 2010;58(4):1379-86. DOI: 10.1016/j.actamat.2009.10.044. Search in Google Scholar

[19] Dadbakhsh S, Taheri AK, Smith CW. Strengthening study on 6082 Al alloy after combination of aging treatment and ECAP process. Mater Sci Eng A. 2010;527(18-19):4758-66. DOI: 10.1016/j.msea.2010.04.017. Search in Google Scholar

[20] Valiev RZ, Islamgaliev RK, Alexandrov IV. Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci. 2000;45(2):103-89. DOI: 10.1016/S0079-6425(99)00007-9. Search in Google Scholar

[21] Shuai L, Li Z, Zhang DT, Tong YX, Li L. The mechanical property and electrical conductivity evolution of Al-Fe alloy between room temperature and elevated temperature ECAP. Vacuum. 2021;183:109813. DOI: 10.1016/j.vacuum.2020.109813. Search in Google Scholar

[22] Liu W, Ma H, Walsh A. Advance in photonic crystal solar cells. Renew Sust Energy Rev. 2019;116:109436. DOI: 10.1016/j.rser.2019.109436. Search in Google Scholar

[23] Zhang X, Zang C, Ma H, Wang Z. Study on removing calcium carbonate plug from near wellbore by high-power ultrasonic treatment. Ultrason Sonochem. 2020:104515. DOI: 10.1016/j.ultsonch.2019.03.006. Search in Google Scholar

[24] Ma H, Zhang X, Ju F, Tsai S-B. A study on curing kinetics of nano-phase modified epoxy resin. Sci Rep. 2018;8:3045. DOI: 10.1038/s41598-018-21208-0. Search in Google Scholar

[25] Ma H, Tsai S-B. Design of research on performance of a new iridium coordination compound for the detection of Hg2+. Int J Env Res Public Health. 2017;14:1232. DOI: 10.3390/ijerph14101232. Search in Google Scholar

[26] Baffari D, Reynolds AP, Masnata A, Fratini L, Ingarao G. Friction stir extrusion to recycle aluminum alloys scraps: energy efficiency characterization. J Manuf Processes. 2019;43:63-9. DOI: 10.1016/j.jmapro.2019.03.049. Search in Google Scholar

[27] Srinivasan R, Cherukuri B, Chaudhury PK. Scaling up of equal channel angular pressing (ECAP) for the production of forging stock. Mater Sci Forum. 2006;503:371-8. DOI: 10.4028/www.scientific.net/MSF.503-504.371. Search in Google Scholar

[28] Hakala M, Nygård K, Manninen S, Huitari S, Buslaps T, Nilsson A, et al. J Chem Phys. 2006:125:084504. DOI: 10.1063/1.2273627. Search in Google Scholar

[29] Simeonov V. Chem Didact Ecol Metrol. 2019;24(1-2):7-21. DOI: 10.2478/cdem-2019-0001. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo