[Abelilla J.J., Stein H.H. (2019). Degradation of dietary fiber in the stomach, small intestine, and large intestine of growing pigs fed corn- or wheat-based diets without or with microbial xylanase. J. Anim. Sci., 97: 338–352.]Search in Google Scholar
[Anguita M., Canibe N., Pérez J.F., Jensen B.B. (2006). Influence of the amount of dietary fibre on the available energy from hindgut fermentation in growing pigs: use of cannulated pigs and in vitro fermentation. J. Anim. Sci., 84: 2766–2778.]Search in Google Scholar
[Bach Knudsen K.E., Canibe N., Jørgensen H. (2000). Quantification of the absorption of nutrients deriving from carbohydrate assimilation: model experiment with catheterised pigs fed on wheat and oat-based rolls. Brit. J. Nutr., 84: 449–458.]Search in Google Scholar
[Bach Knudsen K.E., Hedemann M.S., Lærke H.N. (2001). The role of carbohydrates in intestinal health of pigs. Anim. Feed Sci. Technol., 83: 41–53.]Search in Google Scholar
[Bach Knudsen K.E., Lærke H.N., Jørgensen H. (2013) Carbohydrates and carbohydrate utilization in swine. In: Sustainable swine nutrition, Chiba L.I. (ed.). John Wiley and Sons, Hoboken, USA, pp. 109–135.]Search in Google Scholar
[Ball M.E.E., Magowan E., McCracken K.J., Beattie V.E., Bradford R., Thompson A., Gordon F.J. (2015). An investigation into the effect of dietary particle size and pelleting of diets for finishing pigs. Livest. Sci., 173: 48–54.]Search in Google Scholar
[Bindelle J., Buldgen A., Delacollette M., Wavreille J., Agneessens R., Destain J.P., Leterme P. (2009). Influence of source and concentrations of dietary fiber on in vivo nitrogen excretion pathways in pigs as reflected by in vitro fermentation and nitrogen incorporation by fecal bacteria. J. Anim. Sci., 87: 583–593.]Search in Google Scholar
[Capuano E. (2017). The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect. Crit. Rev. Food Sci. Nutr., 57: 3543–3564.]Search in Google Scholar
[Carneiro M.S.C., Lordelo M.M., Cunha L.F., Freire J.P.B. (2008). Effects of dietary fibre source and enzyme supplementation on faecal apparent digestibility, short chain fatty acid production and activity of bacterial enzymes in the gut of piglets. Anim. Feed Sci. Technol., 146: 124–136.]Search in Google Scholar
[Casas G.A., Stein H.H. (2017). Gestating sows have greater digestibility of energy in full fat rice bran and defatted rice bran than growing gilts regardless of the level of feeding intake. J. Anim. Sci., 95: 3136–3142.]Search in Google Scholar
[Casas G.A., Rodriguez D.A., Stein H.H. (2018). Nutrient composition and digestibility of energy and nutrients in wheat middlings and red dog fed to growing pigs. J. Anim. Sci., 96: 215–224.]Search in Google Scholar
[Cervantes-Pahm S.K., Liu Y., Evans A., Stein H.H. (2014). Effect of novel fiber ingredients on ileal and total tract digestibility of energy and nutrients in semi-purified diets fed to growing pigs. J. Sci. Food Agric., 94: 1284–1290.]Search in Google Scholar
[Chen H., Mao X.B., Che L.Q., Yu B., He J., Yu J., Han G.Q., Huang Z.Q., Zheng P., Chen D.W. (2014). Impact of fiber types on gut microbiota, gut environment and gut function in fattening pigs. Anim. Feed Sci. Technol., 195: 101–111.]Search in Google Scholar
[Dégen L., Halas V., Tossenberger J., Szabó C., Babinszky L. (2009). The impact of dietary fiber and fat levels on total tract digestibility of energy and nutrients in growing pigs and its consequence for diet formulation. Acta Agric. Scand. A Anim. Sci., 59: 150–160.]Search in Google Scholar
[Dikeman C.L., Fahey G.C. (2006). Viscosity as related to dietary fiber: a review. Crit. Rev. Food Sci. Nutr., 46: 649–663.]Search in Google Scholar
[Fan Y., Guo P., Yang Y., Xia T., Liu L., Ma Y. (2017). Effects of particle size and adaptation duration on the digestible and metabolizable energy contents and digestibility of various chemical constituents in wheat for finishing pigs determined by the direct or indirect method. Asian-Australas. J. Anim. Sci., 30: 554–561.]Search in Google Scholar
[Freire J.P.B., Guerreiro A.J.G., Cunha L.F., Aumaitre A. (2000). Effect of dietary fibre source on total tract digestibility, caecum volatile fatty acids and digestive transit time in the weaned piglet. Anim. Feed Sci. Technol., 87: 71–83.]Search in Google Scholar
[Gao L., Chen L., Huang Q., Meng L., Zhong R., Liu C., Tang X., Zhang H. (2015). Effect of dietary fiber type on intestinal nutrient digestibility and hindgut fermentation of diets fed to finishing pigs. Livest. Sci., 174: 53–58.]Search in Google Scholar
[Hetland H., Choct M., Svihus B. (2004). Role of insoluble non-starch polysaccharides in poultry nutrition. World. Poult. Sci. J., 60: 415–422.]Search in Google Scholar
[Hooda S., Metzler-Zebeli B.U., Vasanthan T., Zijlstra R.T. (2011). Effects of viscosity and ferment ability of dietary fibre on nutrient digestibility and digesta characteristics in ileal-cannulated grower pigs. Brit. J. Nutr., 106: 664–674.]Search in Google Scholar
[Högberg A., Lindberg J.E. (2004). Influence of cereal non-starch polysaccharides and enzyme supplementation on digestion site and gut environment in weaned piglets. Anim. Feed Sci. Technol., 116: 113–128.]Search in Google Scholar
[Huang Q., Piao X.S., Liu L., Li D.F. (2013). Effects of inclusion level on nutrient digestibility and energy content of wheat middlings and soya bean meal for growing pigs. Arch. Anim. Nutr., 67: 356–367.]Search in Google Scholar
[Huang Q., Su Y.B., Li D.F., Liu L., Huang C.F., Zhu Z.P., Lai C.H. (2015). Effects of inclusion levels of wheat bran and body weight on ileal and fecal digestibility in growing pigs. Asian-Australas. J. Anim. Sci., 28: 847–854.]Search in Google Scholar
[Huang C.F., Zhang S., Stein H.H., Zhao J., Li D.F., Lai C.H. (2018). Effect of inclusion level and adaptation duration on digestible energy and nutrient digestibility in palm kernel meal fed to growing-finishing pigs. Asian-Australas. J. Anim. Sci., 31: 395–402.]Search in Google Scholar
[Ingerslev A.K., Theil P.K., Hedemann M.S., Lærke H.N., Bach Knudsen K.E. (2014). Resistant starch and arabinoxylan augment SCFA absorption, but affect postprandial glucose and insulin responses differently. Brit. J. Nutr., 111: 1564–1576.]Search in Google Scholar
[Ivarsson E., Frankow-Lindberg B.E., Andersson K., Lindberg J.E. (2011). Growth performance, digestibility and faecal coliform bacteria in weaned piglets fed a cereal-based diet including either chicory (Cichorium intybus L) or ribwort (Plantago lanceolata L) forage. Animal, 5: 558–564.]Search in Google Scholar
[Iyayi E.A., Adeola O. (2015). Quantification of short-chain fatty acids and energy production from hindgut fermentation in cannulated pigs fed graded levels of wheat bran. J. Anim. Sci., 93: 4781–4787.]Search in Google Scholar
[Jakobsen G.V., Jensen B.B., Bach Knudsen K.B., Canibe N. (2007). Impact of fermentation and addition of non-starch polysaccharide-degrading enzymes on microbial population and on digestibility of dried distillers grains with solubles in pigs. Livest. Sci., 178: 216–227.]Search in Google Scholar
[Jaworski N.W., Stein H.H. (2017). Disappearance of nutrients and energy in the stomach and small intestine, cecum, and colon of pigs fed corn-soybean meal diets containing distillers dried grains with solubles, wheat middlings, or soybean hulls. J. Anim. Sci., 95: 727–739.]Search in Google Scholar
[Jaworski N.W., Liu D.W., Li D.F., Stein H.H. (2016). Wheat bran reduces concentrations of digestible, metabolizable, and net energy in diets fed to pigs, but energy values in wheat bran determined by the difference procedure are not different from values estimated from a linear regression procedure. J. Anim. Sci., 94: 3012–3021.]Search in Google Scholar
[Jha R., Leterme P. (2012). Feed ingredients differing in fermentable fibre and indigestible protein content affect fermentation metabolites and faecal nitrogen excretion in growing pigs. Animal, 6: 603–612.]Search in Google Scholar
[Jha R., Rossnagel B., Pieper R., Van Kessel A., Leterme P. (2010). Barley and oat cultivars with diverse carbohydrate composition alter ileal and total tract nutrient digestibility and fermentation metabolites in weaned piglets. Animal, 4: 724–731.]Search in Google Scholar
[Jha R., Bindelle J., Rossnagel B., Van Kessel A.G., Leterme P. (2011). In vitro evaluation of the fermentation characteristics of the carbohydrate fractions of hulless barley and other cereals in the gastrointestinal tract of pigs. Anim. Feed Sci. Technol., 163: 185–193.]Search in Google Scholar
[Ji F., Casper D.P., Brown P.K., Spangler D.A., Haydon K.D., Pettigrew J.E. (2008). Effects of dietary supplementation of an enzyme blend on the ileal and fecal digestibility of nutrients in growing pigs. J. Anim. Sci., 86: 1533–1543.]Search in Google Scholar
[Jørgensen H., Serena A., Hedemann M.S., Bach Knudsen K.E. (2007). The fermentative capacity of growing pigs and adult sows fed diets with contrasting type and level of dietary fibre. Livest. Sci., 109: 111–114.]Search in Google Scholar
[Karr-Lilienthal L.K., Kadzere C.T., Grieshop C.M., Fahey Jr G.C. (2005). Chemical and nutritional properties of soybean carbohydrates as related to nonruminants: a review. Livest. Prod. Sci., 97: 1–12.]Search in Google Scholar
[Kelkar S., Siddiq M., Harte J.B., Dolan K.D., Nyombaire G., Suniaga H. (2012). Use of low temperature extrusion for reducing phytohemagglutinin activity (PHA) and oligosaccharides in beans (Phaseolus vulgaris L) cv. Navy and Pinto. Food Chem., 133: 1636–1639.]Search in Google Scholar
[Khieu B., Lindberg J.E., Ogle R.B. (2005). Effect of variety and preservation method of cassava leaves on diet digestibility by indigenous and improved pigs. Anim. Sci., 80: 319–324.]Search in Google Scholar
[Kil D.Y., Kim B.G., Stein H.H. (2013). Invited review: Feed energy evaluation for growing pigs. Asian-Australas. J. Anim. Sci., 26: 1205–1217.]Search in Google Scholar
[Koh A., De Vadder F., Kovatcheva-Datchary P., Backhed F. (2016). From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell, 165: 1332–1345.]Search in Google Scholar
[Lærke H.N., Arent S., Dalsgaard S., Bach Knudsen K.E. (2015). Effect of xylanases on ileal viscosity, intestinal fiber modification, and apparent ileal fiber and nutrient digestibility of rye and wheat in growing pigs. J. Anim. Sci., 93: 4323–4335.]Search in Google Scholar
[Le Goff G., Noblet J. (2001) Comparative total tract digestibility of dietary energy and nutrients in growing pigs and adult sows. J. Anim. Sci., 79: 2418–2427.]Search in Google Scholar
[Len N.T., Lindberg J.E., Ogle B. (2007). Digestibility and nitrogen retention of diets containing different levels of fibre in local (Mong Cai), F1 (Mong Cai × Yorkshire) and exotic (Landrace × Yorkshire) growing pigs in Vietnam. J. Anim. Physiol. Anim. Nutr. (Berl.), 91: 297–303.]Search in Google Scholar
[Li E.K., Zhao J.B., Liu L., Zhang S. (2018). Digestible energy and metabolizable energy contents of konjac flour residues and ramie in growing pigs. Anim. Nutr., 4: 228–233.]Search in Google Scholar
[Li Y.K., Li Z.C., Liu H., Noblet J., Liu L., Li D.F., Wang F.L., Lai C.H. (2018). Net energy content of rice bran, corn germ meal, corn gluten feed, peanut meal, and sunflower meal in growing pigs. Asian-Australas. J. Anim. Sci., 31: 1481–1490.]Search in Google Scholar
[Li Z.C. (2017). Net energy prediction of plant protein ingredients to growing pigs. PhD thesis, China Agricultural University, China]Search in Google Scholar
[Li Z.C., Li P., Liu D.W., Li D.F., Wang F.L., Su Y.B., Zhu Z.P., Piao X.S. (2017). Determination of the energy value of corn distillers dried grains with solubles containing different oil levels in growing pigs. J. Anim. Physiol. Anim. Nutr. (Berl.), 101: 339–348.]Search in Google Scholar
[Lindberg J.E. (2014). Fiber effects in nutrition and gut health in pig. J. Anim. Sci., Biotech., 5: 15.]Search in Google Scholar
[Liu H., Wang J., He T., Becker S., Zhang G., Li D., Ma X. (2018). Butyrate: A double-edged sword for health? Adv. Nutr., 9: 21–29.]Search in Google Scholar
[Liu Q., Zhang W.M., Zhang Z.J., Zhang Y.J., Zhang Y.W., Chen L., Zhang S. (2016). Effect of fiber source and enzyme addition on the apparent digestibility of nutrients and physicochemical properties of digesta in cannulated growing pigs. Anim. Feed Sci. Technol., 216: 262–272.]Search in Google Scholar
[Lyu Z.Q., Huang C.F., Li Y.K., Li P.L., Liu H., Chen Y.F., Li D.F., Lai C.H. (2018 a). Adaptation duration for net energy determination of high fiber diets in growing pigs. Anim. Feed Sci. Technol., 241: 15–26.10.1016/j.anifeedsci.2018.04.008]Search in Google Scholar
[Lyu Z.Q., Huang B.B., Li Z.C., Wang Z.Y., Chen Y.F., Zhang S., Lai C.H. (2018 b). Net energy of oat bran, wheat bran, and palm kernel expellers fed to growing pigs using indirect calorimetry. Anim. Sci. J., 90: 98–107.10.1111/asj.1312430444062]Search in Google Scholar
[Lyu Z.Q., Li Y.K., Liu H., Li E.K., Li P.L., Zhang S., Wang F.L., Lai C.H. (2018 c). Net energy content of rice bran, defatted rice bran, corn gluten feed, and corn germ meal fed to growing pigs using indirect calorimetry. J. Anim. Sci., 96: 1977–1888.10.1093/jas/sky098614096529733419]Search in Google Scholar
[Maison T., Liu Y., Stein H.H. (2015). Digestibility of energy and detergent fiber and digestible and metabolizable energy values in canola meal, 00-rapeseed meal, and 00-rapeseed expellers fed to growing pigs. J. Anim. Sci., 93: 652–660.]Search in Google Scholar
[Martinez-Puig D., Pérez J.F., Castillo M., Andaluz A., Anguita M., Morales J., Gasa J. (2003). Consumption of raw potato starch increases colon length and fecal excretion of purine bases in growing pigs. J. Nutr., 133: 134–139.]Search in Google Scholar
[Martinez-Puig D., Castillo M., Nofrariías M., Creus E., Pérez J.F. (2007). Long-term effects on the digestive tract of feeding large amounts of resistant starch: a study in pigs. J. Sci. Food Agric., 87: 1991–1999.]Search in Google Scholar
[Miner-Williams W., Deglaire A., Benamouzig R., Fuller M.F., Tomé D., Moughan P.J., (2012). Endogenous proteins in terminal ileal digesta of adult subjects fed a casein-based diet. Am. J. Clin. Nutr., 96: 508–515.]Search in Google Scholar
[Molist F., Gómez de Segura A., Gasa J., Hermes R.G., Manzanilla E.G., Anguita M., Pérez J.F. (2009). Effects of the insoluble and soluble dietary fibre on the physicochemical properties of digesta and microbial activity in early weaned piglets. Anim. Feed Sci. Technol., 149: 346–353.]Search in Google Scholar
[Molist F., Ywazaki M., Gómez de Segura A., Hermes R.G., Gasa J., Pérez J.F. (2010). Administration of loperamide and addition of wheat bran to the diets of weaner pigs decrease the incidence of diarrhea and enhance their gut maturation. Brit. J. Nutr., 103: 879–885.]Search in Google Scholar
[Molist F., Manzanilla E.G., Pérez J.F., Nyachoti C.M. (2012). Coarse, but not finely ground, dietary fibre increases intestinal Firmicutes:Bacteroidetes ratio and reduces diarrhoea induced by experimental infection in piglets. Brit. J. Nutr., 108: 9–15.]Search in Google Scholar
[Molist F., van Oostruma M., Pérez J.F., Mateos G.G., Nyachoti C.M., van der Aar P.J., (2014). Relevance of functional properties of dietary fibre in diets for weanling pigs. Anim. Feed Sci. Technol., 189: 1–10.]Search in Google Scholar
[Montoya C.A., Henare S.J., Rutherfurd S.M., Moughan P.J. (2016). Potential misinterpretation of the nutritional value of dietary fiber: correcting fiber digestibility values for nondietary gut-interfering material. Nutr. Rev., 74: 517–533.]Search in Google Scholar
[Montoya C.A., Rutherfurd S.M., Moughan P.J. (2017). Ileal digesta nondietary substrates from cannulated pigs are major contributors to in vitro human hindgut short-chain fatty acid production. J. Nutr., 147: 264–271.]Search in Google Scholar
[Mpendulo C.T., Chimonyo M., Ndou S.P., Bakare A.G. (2018). Fiber source and inclusion level affects characteristics of excreta from growing pigs. Asian-Australas. J. Anim. Sci., 31: 755–762.]Search in Google Scholar
[Navarro D.M.D.L., Bruininx E.M.A.M., de Jong L., Stein H.H. (2018 a). The contribution of digestible and metabolizable energy from high-fiber dietary ingredients is not affected by inclusion rate in mixed diets fed to growing pigs. J. Anim. Sci., 96: 1860–1868.10.1093/jas/sky090614088329534181]Search in Google Scholar
[Navarro D.M.D.L., Bruininx E.M.A.M., de Jong L., Stein H.H. (2018 b). Effects of physicochemical characteristics of feed ingredients on the apparent total tract digestibility of energy, dry matter and nutrients by growing pigs. J. Anim. Sci., 96: 2265–2277.10.1093/jas/sky149609534629688508]Search in Google Scholar
[Ndou S.P., Kiarie E., Ames N., Nyachoti C.M. (2019). Flaxseed meal and oat hulls supplementation: impact on dietary fiber digestibility, and flows of fatty acids and bile acids in growing pigs. J. Anim. Sci., 97: 291–301.]Search in Google Scholar
[Nielsen T.S., Lærke H.N., Theil P.K., Sørensen J.F., Saarinen M., Forssten S., Bach Knudsen K.E. (2014). Diets high in resistant starch and arabinoxylan modulate digestion processes and SCFA pool size in the large intestine and faecal microbial composition in pigs. Brit. J. Nutr., 112: 1837–1848.]Search in Google Scholar
[Roca-Canudas M., Anguita M., Nofrarías M., Majó N., Pérez de Rozas A.M., Martín-Orúe S.M., Pérez J.F., Pujols J., Segalés J., Badiola I. (2007). Effects of different types of dietary non-digestible carbohydrates on the physicochemical properties and microbiota of proximal colon digesta of growing pigs. Livest. Sci. 109: 85–88.]Search in Google Scholar
[Rojas O.J., Stein H.H. (2015). Effects of reducing the particle size of corn grain on the concentration of digestible and metabolizable energy and on the digestibility of energy and nutrients in corn grain fed to growing pigs. Livest. Sci., 181: 187–193.]Search in Google Scholar
[Rojas O.J., Vinyeta E., Stein H.H. (2016). Effects of pelleting, extrusion, or extrusion and pelleting on energy and nutrient digestibility in diets containing different levels of fiber and fed to growing pigs. J. Anim. Sci., 94: 1951–1960.]Search in Google Scholar
[Sholly D.M., Jørgensen H., Sutton A.L., Richert B.T., Bach Knudsen K.E. (2011). Effect of fermentation of cereals on the degradation of polysaccharides and other macronutrients in the gastrointestinal tract of growing pigs. J. Anim. Sci., 89: 2096–2105.]Search in Google Scholar
[Urriola P.E., Stein H.H. (2010). Effects of distillers dried grains with solubles on amino acid, energy, and fiber digestibility and on hindgut fermentation of dietary fiber in a corn-soybean meal diet fed to growing pigs. J. Anim. Sci., 88: 1454–1462.]Search in Google Scholar
[Urriola P.E., Stein H.H. (2012). Comparative digestibility of energy and nutrients in fibrous feed ingredients fed to Meishan and Yorkshire pigs. J. Anim. Sci., 90: 802–812.]Search in Google Scholar
[Urriola P.E., Shurson G.C., Stein H.H. (2010). Digestibility of dietary fiber in distillers coproducts fed to growing pigs. J. Anim. Sci., 88: 2373–2381.]Search in Google Scholar
[Wang Z.Y., Chen Y.F., Ding J., Liu H., Lyu Z.Q., Dong W.X., Wang Z.J., Zhang S., Wang F.L. (2019). Net energy content of five fiber-rich ingredients fed to pregnant sows. Anim. Sci. J., 90: 939–947.]Search in Google Scholar
[Wilfart A., Montagne L., Simmins P.H., Van Milgen J., Noblet J. (2007). Sites of nutrient digestion in growing pigs: Effect of dietary fiber. J. Anim. Sci., 85: 976–983.]Search in Google Scholar
[Williams B.A., Verstegen M.W.A., Tamminga S. (2001). Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutr. Res. Rev., 14: 207–227.]Search in Google Scholar
[Williams B.A., Mikkelsen D., Flanagan B.M., Gidley M.J. (2019). “Dietary fiber”: moving beyond the “soluble/insoluble” classification for monogastric nutrition, with an emphasis on humans and pigs. J. Anim. Sci. Biotech., 10: 45.]Search in Google Scholar
[Wu X., Chen D., Yu B., Luo Y., Zheng P., Mao X., Yu J., He J. (2018). Effect of different dietary non-starch fiber fractions on growth performance, nutrient digestibility, and intestinal development in weaned pigs. Nutrition, 51: 20–28.]Search in Google Scholar
[Yu Z., Zhang S., Yang Q., Peng Q., Zhu J., Zeng X., Qiao S. (2016). Effect of high fiber diets formulated with different fibrous ingredients on performance, nutrient digestibility and faecal microbiota of weaned piglets. Arch. Anim. Nutr., 70: 263–277.]Search in Google Scholar
[Zhang W.J., Li D.F., Liu L., Zang J.J., Duan Q.W., Yang W.J., Zhang L.Y. (2013). The effects of dietary fiber level on nutrient digestibility in growing pigs. J. Anim. Sci. Biotech., 4: 17.]Search in Google Scholar
[Zhang Z.Y., Liu Z.Y., Zhang S., Lai C.H., Ma D.L., Huang C.F. (2019). Effect of inclusion level of corn germ meal on the digestibility and metabolizable energy and evaluation of ileal AA digestibility of corn germ meal fed to growing pigs. J. Anim. Sci., 97: 768–778.]Search in Google Scholar
[Zhao J.B., Liu P., Wu Y., Guo P., Liu L., Ma N., Levesque C., Chen Y., Zhao J.S., Zhang J., Ma X. (2018 a). Dietary fiber increases butyrate-producing bacteria and improves the growth performance of weaned piglets. J. Agric. Food Chem., 66: 7995–8004.10.1021/acs.jafc.8b0254529986139]Search in Google Scholar
[Zhao J.B., Wang Q., Liu L., Chen Y., Jin A., Liu G., Li K., Li D., Lai C. (2018 b). Comparative digestibility of nutrients and amino acids in high-fiber diets fed to crossbred barrows of Duroc boars crossed with Berkshire × Jiaxing and Landrace × Yorkshire. Asian-Australas. J. Anim. Sci., 31: 721–728.10.5713/ajas.17.0344593028328920415]Search in Google Scholar
[Zhao J.B., Zhang S., Xie F., Li D., Huang C. (2018 c). Effects of inclusion level and adaptation period on nutrient digestibility and digestible energy of wheat bran in growing-finishing pigs. Asian-Australas. J. Anim. Sci., 31: 116–122.10.5713/ajas.17.0277575691228728365]Search in Google Scholar
[Zhao J.B., Bai Y., Tao S., Zhang G., Wang J., Liu L., Zhang S. (2019 a). Fiber-rich foods affects gut bacterial community and short-chain fatty acids production in pig model. J. Funct. Foods., 57: 266–274.10.1016/j.jff.2019.04.009]Search in Google Scholar
[Zhao J.B., Zhang G., Dong W.X., Zhang Y., Wang J.J., Liu L., Zhang S. (2019 b). Effects of dietary particle size and fiber source on nutrient digestibility and short chain fatty acid production in cannulated growing pigs. Anim. Feed Sci. Technol., 258: 114310.10.1016/j.anifeedsci.2019.114310]Search in Google Scholar
[Zhao J.B., Bai Y., Zhang G., Liu L., Lai C.H. (2020 a). Relationship between dietary fiber fermentation and volatile fatty acids’ concentration in growing pigs. Animals, 10: 263.10.3390/ani10020263707077632045993]Search in Google Scholar
[Zhao J.B., Zhang G., Liu L., Wang J., Zhang S. (2020 b). Effects of fibre-degrading enzymes in combination with different sources on ileal and total tract nutrient digestibility and fermentation products in pigs. Arch. Anim. Nutr., 74: 309–324.10.1080/1745039X.2020.176633332441546]Search in Google Scholar
[Zhao J.B., Liu X.Z., Zhang Y., Liu L., Wang W.W., Zhang S. (2020 c). Effects of body weight and fiber sources on fiber digestibility and short chain fatty acid concentration in growing pigs. Asian-Australas. J. Anim. Sci., 33: 1975–1984.10.5713/ajas.19.0713764940832054171]Search in Google Scholar
[Zijlstra R.T., Owusu-Asiedu A., Simmins P.H. (2010). Future of NSPdegrading enzymes to improve nutrient utilization of co-products and gut health in pigs. Livest. Sci., 134: 255–257.]Search in Google Scholar