Open Access

Fiber digestibility in growing pigs fed common fiber-rich ingredients – A systematic review


Cite

Abelilla J.J., Stein H.H. (2019). Degradation of dietary fiber in the stomach, small intestine, and large intestine of growing pigs fed corn- or wheat-based diets without or with microbial xylanase. J. Anim. Sci., 97: 338–352.10.1093/jas/sky403Search in Google Scholar

Anguita M., Canibe N., Pérez J.F., Jensen B.B. (2006). Influence of the amount of dietary fibre on the available energy from hindgut fermentation in growing pigs: use of cannulated pigs and in vitro fermentation. J. Anim. Sci., 84: 2766–2778.10.2527/jas.2005-212Search in Google Scholar

Bach Knudsen K.E., Canibe N., Jørgensen H. (2000). Quantification of the absorption of nutrients deriving from carbohydrate assimilation: model experiment with catheterised pigs fed on wheat and oat-based rolls. Brit. J. Nutr., 84: 449–458.10.1017/S0007114500001756Search in Google Scholar

Bach Knudsen K.E., Hedemann M.S., Lærke H.N. (2001). The role of carbohydrates in intestinal health of pigs. Anim. Feed Sci. Technol., 83: 41–53.10.1016/j.anifeedsci.2011.12.020Search in Google Scholar

Bach Knudsen K.E., Lærke H.N., Jørgensen H. (2013) Carbohydrates and carbohydrate utilization in swine. In: Sustainable swine nutrition, Chiba L.I. (ed.). John Wiley and Sons, Hoboken, USA, pp. 109–135.10.1002/9781118491454.ch5Search in Google Scholar

Ball M.E.E., Magowan E., McCracken K.J., Beattie V.E., Bradford R., Thompson A., Gordon F.J. (2015). An investigation into the effect of dietary particle size and pelleting of diets for finishing pigs. Livest. Sci., 173: 48–54.10.1016/j.livsci.2014.11.015Search in Google Scholar

Bindelle J., Buldgen A., Delacollette M., Wavreille J., Agneessens R., Destain J.P., Leterme P. (2009). Influence of source and concentrations of dietary fiber on in vivo nitrogen excretion pathways in pigs as reflected by in vitro fermentation and nitrogen incorporation by fecal bacteria. J. Anim. Sci., 87: 583–593.10.2527/jas.2007-0717Search in Google Scholar

Capuano E. (2017). The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect. Crit. Rev. Food Sci. Nutr., 57: 3543–3564.10.1080/10408398.2016.1180501Search in Google Scholar

Carneiro M.S.C., Lordelo M.M., Cunha L.F., Freire J.P.B. (2008). Effects of dietary fibre source and enzyme supplementation on faecal apparent digestibility, short chain fatty acid production and activity of bacterial enzymes in the gut of piglets. Anim. Feed Sci. Technol., 146: 124–136.10.1016/j.anifeedsci.2007.12.001Search in Google Scholar

Casas G.A., Stein H.H. (2017). Gestating sows have greater digestibility of energy in full fat rice bran and defatted rice bran than growing gilts regardless of the level of feeding intake. J. Anim. Sci., 95: 3136–3142.10.2527/jas.2017.1585Search in Google Scholar

Casas G.A., Rodriguez D.A., Stein H.H. (2018). Nutrient composition and digestibility of energy and nutrients in wheat middlings and red dog fed to growing pigs. J. Anim. Sci., 96: 215–224.10.1093/jas/skx010Search in Google Scholar

Cervantes-Pahm S.K., Liu Y., Evans A., Stein H.H. (2014). Effect of novel fiber ingredients on ileal and total tract digestibility of energy and nutrients in semi-purified diets fed to growing pigs. J. Sci. Food Agric., 94: 1284–1290.10.1002/jsfa.6405Search in Google Scholar

Chen H., Mao X.B., Che L.Q., Yu B., He J., Yu J., Han G.Q., Huang Z.Q., Zheng P., Chen D.W. (2014). Impact of fiber types on gut microbiota, gut environment and gut function in fattening pigs. Anim. Feed Sci. Technol., 195: 101–111.10.1016/j.anifeedsci.2014.06.002Search in Google Scholar

Dégen L., Halas V., Tossenberger J., Szabó C., Babinszky L. (2009). The impact of dietary fiber and fat levels on total tract digestibility of energy and nutrients in growing pigs and its consequence for diet formulation. Acta Agric. Scand. A Anim. Sci., 59: 150–160.10.1080/09064700903254281Search in Google Scholar

Dikeman C.L., Fahey G.C. (2006). Viscosity as related to dietary fiber: a review. Crit. Rev. Food Sci. Nutr., 46: 649–663.10.1080/10408390500511862Search in Google Scholar

Fan Y., Guo P., Yang Y., Xia T., Liu L., Ma Y. (2017). Effects of particle size and adaptation duration on the digestible and metabolizable energy contents and digestibility of various chemical constituents in wheat for finishing pigs determined by the direct or indirect method. Asian-Australas. J. Anim. Sci., 30: 554–561.10.5713/ajas.16.0324Search in Google Scholar

Freire J.P.B., Guerreiro A.J.G., Cunha L.F., Aumaitre A. (2000). Effect of dietary fibre source on total tract digestibility, caecum volatile fatty acids and digestive transit time in the weaned piglet. Anim. Feed Sci. Technol., 87: 71–83.10.1016/S0377-8401(00)00183-8Search in Google Scholar

Gao L., Chen L., Huang Q., Meng L., Zhong R., Liu C., Tang X., Zhang H. (2015). Effect of dietary fiber type on intestinal nutrient digestibility and hindgut fermentation of diets fed to finishing pigs. Livest. Sci., 174: 53–58.10.1016/j.livsci.2015.01.002Search in Google Scholar

Hetland H., Choct M., Svihus B. (2004). Role of insoluble non-starch polysaccharides in poultry nutrition. World. Poult. Sci. J., 60: 415–422.10.1079/WPS200325Search in Google Scholar

Hooda S., Metzler-Zebeli B.U., Vasanthan T., Zijlstra R.T. (2011). Effects of viscosity and ferment ability of dietary fibre on nutrient digestibility and digesta characteristics in ileal-cannulated grower pigs. Brit. J. Nutr., 106: 664–674.10.1017/S0007114511000985Search in Google Scholar

Högberg A., Lindberg J.E. (2004). Influence of cereal non-starch polysaccharides and enzyme supplementation on digestion site and gut environment in weaned piglets. Anim. Feed Sci. Technol., 116: 113–128.10.1016/j.anifeedsci.2004.03.010Search in Google Scholar

Huang Q., Piao X.S., Liu L., Li D.F. (2013). Effects of inclusion level on nutrient digestibility and energy content of wheat middlings and soya bean meal for growing pigs. Arch. Anim. Nutr., 67: 356–367.10.1080/1745039X.2013.837233Search in Google Scholar

Huang Q., Su Y.B., Li D.F., Liu L., Huang C.F., Zhu Z.P., Lai C.H. (2015). Effects of inclusion levels of wheat bran and body weight on ileal and fecal digestibility in growing pigs. Asian-Australas. J. Anim. Sci., 28: 847–854.10.5713/ajas.14.0769Search in Google Scholar

Huang C.F., Zhang S., Stein H.H., Zhao J., Li D.F., Lai C.H. (2018). Effect of inclusion level and adaptation duration on digestible energy and nutrient digestibility in palm kernel meal fed to growing-finishing pigs. Asian-Australas. J. Anim. Sci., 31: 395–402.10.5713/ajas.17.0515Search in Google Scholar

Ingerslev A.K., Theil P.K., Hedemann M.S., Lærke H.N., Bach Knudsen K.E. (2014). Resistant starch and arabinoxylan augment SCFA absorption, but affect postprandial glucose and insulin responses differently. Brit. J. Nutr., 111: 1564–1576.10.1017/S0007114513004066Search in Google Scholar

Ivarsson E., Frankow-Lindberg B.E., Andersson K., Lindberg J.E. (2011). Growth performance, digestibility and faecal coliform bacteria in weaned piglets fed a cereal-based diet including either chicory (Cichorium intybus L) or ribwort (Plantago lanceolata L) forage. Animal, 5: 558–564.10.1017/S1751731110002193Search in Google Scholar

Iyayi E.A., Adeola O. (2015). Quantification of short-chain fatty acids and energy production from hindgut fermentation in cannulated pigs fed graded levels of wheat bran. J. Anim. Sci., 93: 4781–4787.10.2527/jas.2015-9081Search in Google Scholar

Jakobsen G.V., Jensen B.B., Bach Knudsen K.B., Canibe N. (2007). Impact of fermentation and addition of non-starch polysaccharide-degrading enzymes on microbial population and on digestibility of dried distillers grains with solubles in pigs. Livest. Sci., 178: 216–227.10.1016/j.livsci.2015.05.028Search in Google Scholar

Jaworski N.W., Stein H.H. (2017). Disappearance of nutrients and energy in the stomach and small intestine, cecum, and colon of pigs fed corn-soybean meal diets containing distillers dried grains with solubles, wheat middlings, or soybean hulls. J. Anim. Sci., 95: 727–739.10.2527/jas.2016.0752Search in Google Scholar

Jaworski N.W., Liu D.W., Li D.F., Stein H.H. (2016). Wheat bran reduces concentrations of digestible, metabolizable, and net energy in diets fed to pigs, but energy values in wheat bran determined by the difference procedure are not different from values estimated from a linear regression procedure. J. Anim. Sci., 94: 3012–3021.10.2527/jas.2016-0352Search in Google Scholar

Jha R., Leterme P. (2012). Feed ingredients differing in fermentable fibre and indigestible protein content affect fermentation metabolites and faecal nitrogen excretion in growing pigs. Animal, 6: 603–612.10.1017/S1751731111001844Search in Google Scholar

Jha R., Rossnagel B., Pieper R., Van Kessel A., Leterme P. (2010). Barley and oat cultivars with diverse carbohydrate composition alter ileal and total tract nutrient digestibility and fermentation metabolites in weaned piglets. Animal, 4: 724–731.10.1017/S1751731109991510Search in Google Scholar

Jha R., Bindelle J., Rossnagel B., Van Kessel A.G., Leterme P. (2011). In vitro evaluation of the fermentation characteristics of the carbohydrate fractions of hulless barley and other cereals in the gastrointestinal tract of pigs. Anim. Feed Sci. Technol., 163: 185–193.10.1016/j.anifeedsci.2010.10.006Search in Google Scholar

Ji F., Casper D.P., Brown P.K., Spangler D.A., Haydon K.D., Pettigrew J.E. (2008). Effects of dietary supplementation of an enzyme blend on the ileal and fecal digestibility of nutrients in growing pigs. J. Anim. Sci., 86: 1533–1543.10.2527/jas.2007-0262Search in Google Scholar

Jørgensen H., Serena A., Hedemann M.S., Bach Knudsen K.E. (2007). The fermentative capacity of growing pigs and adult sows fed diets with contrasting type and level of dietary fibre. Livest. Sci., 109: 111–114.10.1016/j.livsci.2007.01.102Search in Google Scholar

Karr-Lilienthal L.K., Kadzere C.T., Grieshop C.M., Fahey Jr G.C. (2005). Chemical and nutritional properties of soybean carbohydrates as related to nonruminants: a review. Livest. Prod. Sci., 97: 1–12.10.1016/j.livprodsci.2005.01.015Search in Google Scholar

Kelkar S., Siddiq M., Harte J.B., Dolan K.D., Nyombaire G., Suniaga H. (2012). Use of low temperature extrusion for reducing phytohemagglutinin activity (PHA) and oligosaccharides in beans (Phaseolus vulgaris L) cv. Navy and Pinto. Food Chem., 133: 1636–1639.10.1016/j.foodchem.2012.02.044Search in Google Scholar

Khieu B., Lindberg J.E., Ogle R.B. (2005). Effect of variety and preservation method of cassava leaves on diet digestibility by indigenous and improved pigs. Anim. Sci., 80: 319–324.10.1079/ASC41560319Search in Google Scholar

Kil D.Y., Kim B.G., Stein H.H. (2013). Invited review: Feed energy evaluation for growing pigs. Asian-Australas. J. Anim. Sci., 26: 1205–1217.10.5713/ajas.2013.r.02Search in Google Scholar

Koh A., De Vadder F., Kovatcheva-Datchary P., Backhed F. (2016). From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell, 165: 1332–1345.10.1016/j.cell.2016.05.041Search in Google Scholar

Lærke H.N., Arent S., Dalsgaard S., Bach Knudsen K.E. (2015). Effect of xylanases on ileal viscosity, intestinal fiber modification, and apparent ileal fiber and nutrient digestibility of rye and wheat in growing pigs. J. Anim. Sci., 93: 4323–4335.10.2527/jas.2015-9096Search in Google Scholar

Le Goff G., Noblet J. (2001) Comparative total tract digestibility of dietary energy and nutrients in growing pigs and adult sows. J. Anim. Sci., 79: 2418–2427.10.2527/2001.7992418xSearch in Google Scholar

Len N.T., Lindberg J.E., Ogle B. (2007). Digestibility and nitrogen retention of diets containing different levels of fibre in local (Mong Cai), F1 (Mong Cai × Yorkshire) and exotic (Landrace × Yorkshire) growing pigs in Vietnam. J. Anim. Physiol. Anim. Nutr. (Berl.), 91: 297–303.10.1111/j.1439-0396.2006.00653.xSearch in Google Scholar

Li E.K., Zhao J.B., Liu L., Zhang S. (2018). Digestible energy and metabolizable energy contents of konjac flour residues and ramie in growing pigs. Anim. Nutr., 4: 228–233.10.1016/j.aninu.2018.01.001Search in Google Scholar

Li Y.K., Li Z.C., Liu H., Noblet J., Liu L., Li D.F., Wang F.L., Lai C.H. (2018). Net energy content of rice bran, corn germ meal, corn gluten feed, peanut meal, and sunflower meal in growing pigs. Asian-Australas. J. Anim. Sci., 31: 1481–1490.10.5713/ajas.17.0829Search in Google Scholar

Li Z.C. (2017). Net energy prediction of plant protein ingredients to growing pigs. PhD thesis, China Agricultural University, ChinaSearch in Google Scholar

Li Z.C., Li P., Liu D.W., Li D.F., Wang F.L., Su Y.B., Zhu Z.P., Piao X.S. (2017). Determination of the energy value of corn distillers dried grains with solubles containing different oil levels in growing pigs. J. Anim. Physiol. Anim. Nutr. (Berl.), 101: 339–348.10.1111/jpn.12445Search in Google Scholar

Lindberg J.E. (2014). Fiber effects in nutrition and gut health in pig. J. Anim. Sci., Biotech., 5: 15.10.1186/2049-1891-5-15Search in Google Scholar

Liu H., Wang J., He T., Becker S., Zhang G., Li D., Ma X. (2018). Butyrate: A double-edged sword for health? Adv. Nutr., 9: 21–29.10.1093/advances/nmx009Search in Google Scholar

Liu Q., Zhang W.M., Zhang Z.J., Zhang Y.J., Zhang Y.W., Chen L., Zhang S. (2016). Effect of fiber source and enzyme addition on the apparent digestibility of nutrients and physicochemical properties of digesta in cannulated growing pigs. Anim. Feed Sci. Technol., 216: 262–272.10.1016/j.anifeedsci.2016.04.002Search in Google Scholar

Lyu Z.Q., Huang C.F., Li Y.K., Li P.L., Liu H., Chen Y.F., Li D.F., Lai C.H. (2018 a). Adaptation duration for net energy determination of high fiber diets in growing pigs. Anim. Feed Sci. Technol., 241: 15–26.10.1016/j.anifeedsci.2018.04.008Search in Google Scholar

Lyu Z.Q., Huang B.B., Li Z.C., Wang Z.Y., Chen Y.F., Zhang S., Lai C.H. (2018 b). Net energy of oat bran, wheat bran, and palm kernel expellers fed to growing pigs using indirect calorimetry. Anim. Sci. J., 90: 98–107.10.1111/asj.1312430444062Search in Google Scholar

Lyu Z.Q., Li Y.K., Liu H., Li E.K., Li P.L., Zhang S., Wang F.L., Lai C.H. (2018 c). Net energy content of rice bran, defatted rice bran, corn gluten feed, and corn germ meal fed to growing pigs using indirect calorimetry. J. Anim. Sci., 96: 1977–1888.10.1093/jas/sky098614096529733419Search in Google Scholar

Maison T., Liu Y., Stein H.H. (2015). Digestibility of energy and detergent fiber and digestible and metabolizable energy values in canola meal, 00-rapeseed meal, and 00-rapeseed expellers fed to growing pigs. J. Anim. Sci., 93: 652–660.10.2527/jas.2014-7792Search in Google Scholar

Martinez-Puig D., Pérez J.F., Castillo M., Andaluz A., Anguita M., Morales J., Gasa J. (2003). Consumption of raw potato starch increases colon length and fecal excretion of purine bases in growing pigs. J. Nutr., 133: 134–139.10.1093/jn/133.1.134Search in Google Scholar

Martinez-Puig D., Castillo M., Nofrariías M., Creus E., Pérez J.F. (2007). Long-term effects on the digestive tract of feeding large amounts of resistant starch: a study in pigs. J. Sci. Food Agric., 87: 1991–1999.10.1002/jsfa.2835Search in Google Scholar

Miner-Williams W., Deglaire A., Benamouzig R., Fuller M.F., Tomé D., Moughan P.J., (2012). Endogenous proteins in terminal ileal digesta of adult subjects fed a casein-based diet. Am. J. Clin. Nutr., 96: 508–515.10.3945/ajcn.111.033472Search in Google Scholar

Molist F., Gómez de Segura A., Gasa J., Hermes R.G., Manzanilla E.G., Anguita M., Pérez J.F. (2009). Effects of the insoluble and soluble dietary fibre on the physicochemical properties of digesta and microbial activity in early weaned piglets. Anim. Feed Sci. Technol., 149: 346–353.10.1016/j.anifeedsci.2008.06.015Search in Google Scholar

Molist F., Ywazaki M., Gómez de Segura A., Hermes R.G., Gasa J., Pérez J.F. (2010). Administration of loperamide and addition of wheat bran to the diets of weaner pigs decrease the incidence of diarrhea and enhance their gut maturation. Brit. J. Nutr., 103: 879–885.10.1017/S0007114509992637Search in Google Scholar

Molist F., Manzanilla E.G., Pérez J.F., Nyachoti C.M. (2012). Coarse, but not finely ground, dietary fibre increases intestinal Firmicutes:Bacteroidetes ratio and reduces diarrhoea induced by experimental infection in piglets. Brit. J. Nutr., 108: 9–15.10.1017/S0007114511005216Search in Google Scholar

Molist F., van Oostruma M., Pérez J.F., Mateos G.G., Nyachoti C.M., van der Aar P.J., (2014). Relevance of functional properties of dietary fibre in diets for weanling pigs. Anim. Feed Sci. Technol., 189: 1–10.10.1016/j.anifeedsci.2013.12.013Search in Google Scholar

Montoya C.A., Henare S.J., Rutherfurd S.M., Moughan P.J. (2016). Potential misinterpretation of the nutritional value of dietary fiber: correcting fiber digestibility values for nondietary gut-interfering material. Nutr. Rev., 74: 517–533.10.1093/nutrit/nuw014Search in Google Scholar

Montoya C.A., Rutherfurd S.M., Moughan P.J. (2017). Ileal digesta nondietary substrates from cannulated pigs are major contributors to in vitro human hindgut short-chain fatty acid production. J. Nutr., 147: 264–271.10.3945/jn.116.240564Search in Google Scholar

Mpendulo C.T., Chimonyo M., Ndou S.P., Bakare A.G. (2018). Fiber source and inclusion level affects characteristics of excreta from growing pigs. Asian-Australas. J. Anim. Sci., 31: 755–762.10.5713/ajas.14.0611Search in Google Scholar

Navarro D.M.D.L., Bruininx E.M.A.M., de Jong L., Stein H.H. (2018 a). The contribution of digestible and metabolizable energy from high-fiber dietary ingredients is not affected by inclusion rate in mixed diets fed to growing pigs. J. Anim. Sci., 96: 1860–1868.10.1093/jas/sky090614088329534181Search in Google Scholar

Navarro D.M.D.L., Bruininx E.M.A.M., de Jong L., Stein H.H. (2018 b). Effects of physicochemical characteristics of feed ingredients on the apparent total tract digestibility of energy, dry matter and nutrients by growing pigs. J. Anim. Sci., 96: 2265–2277.10.1093/jas/sky149609534629688508Search in Google Scholar

Ndou S.P., Kiarie E., Ames N., Nyachoti C.M. (2019). Flaxseed meal and oat hulls supplementation: impact on dietary fiber digestibility, and flows of fatty acids and bile acids in growing pigs. J. Anim. Sci., 97: 291–301.10.1093/jas/sky398Search in Google Scholar

Nielsen T.S., Lærke H.N., Theil P.K., Sørensen J.F., Saarinen M., Forssten S., Bach Knudsen K.E. (2014). Diets high in resistant starch and arabinoxylan modulate digestion processes and SCFA pool size in the large intestine and faecal microbial composition in pigs. Brit. J. Nutr., 112: 1837–1848.10.1017/S000711451400302XSearch in Google Scholar

Roca-Canudas M., Anguita M., Nofrarías M., Majó N., Pérez de Rozas A.M., Martín-Orúe S.M., Pérez J.F., Pujols J., Segalés J., Badiola I. (2007). Effects of different types of dietary non-digestible carbohydrates on the physicochemical properties and microbiota of proximal colon digesta of growing pigs. Livest. Sci. 109: 85–88.10.1016/j.livsci.2007.01.085Search in Google Scholar

Rojas O.J., Stein H.H. (2015). Effects of reducing the particle size of corn grain on the concentration of digestible and metabolizable energy and on the digestibility of energy and nutrients in corn grain fed to growing pigs. Livest. Sci., 181: 187–193.10.1016/j.livsci.2015.09.013Search in Google Scholar

Rojas O.J., Vinyeta E., Stein H.H. (2016). Effects of pelleting, extrusion, or extrusion and pelleting on energy and nutrient digestibility in diets containing different levels of fiber and fed to growing pigs. J. Anim. Sci., 94: 1951–1960.10.2527/jas.2015-0137Search in Google Scholar

Sholly D.M., Jørgensen H., Sutton A.L., Richert B.T., Bach Knudsen K.E. (2011). Effect of fermentation of cereals on the degradation of polysaccharides and other macronutrients in the gastrointestinal tract of growing pigs. J. Anim. Sci., 89: 2096–2105.10.2527/jas.2010-2891Search in Google Scholar

Urriola P.E., Stein H.H. (2010). Effects of distillers dried grains with solubles on amino acid, energy, and fiber digestibility and on hindgut fermentation of dietary fiber in a corn-soybean meal diet fed to growing pigs. J. Anim. Sci., 88: 1454–1462.10.2527/jas.2009-2162Search in Google Scholar

Urriola P.E., Stein H.H. (2012). Comparative digestibility of energy and nutrients in fibrous feed ingredients fed to Meishan and Yorkshire pigs. J. Anim. Sci., 90: 802–812.10.2527/jas.2010-3254Search in Google Scholar

Urriola P.E., Shurson G.C., Stein H.H. (2010). Digestibility of dietary fiber in distillers coproducts fed to growing pigs. J. Anim. Sci., 88: 2373–2381.10.2527/jas.2009-2227Search in Google Scholar

Wang Z.Y., Chen Y.F., Ding J., Liu H., Lyu Z.Q., Dong W.X., Wang Z.J., Zhang S., Wang F.L. (2019). Net energy content of five fiber-rich ingredients fed to pregnant sows. Anim. Sci. J., 90: 939–947.10.1111/asj.13211Search in Google Scholar

Wilfart A., Montagne L., Simmins P.H., Van Milgen J., Noblet J. (2007). Sites of nutrient digestion in growing pigs: Effect of dietary fiber. J. Anim. Sci., 85: 976–983.10.2527/jas.2006-431Search in Google Scholar

Williams B.A., Verstegen M.W.A., Tamminga S. (2001). Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutr. Res. Rev., 14: 207–227.10.1079/NRR200127Search in Google Scholar

Williams B.A., Mikkelsen D., Flanagan B.M., Gidley M.J. (2019). “Dietary fiber”: moving beyond the “soluble/insoluble” classification for monogastric nutrition, with an emphasis on humans and pigs. J. Anim. Sci. Biotech., 10: 45.10.1186/s40104-019-0350-9Search in Google Scholar

Wu X., Chen D., Yu B., Luo Y., Zheng P., Mao X., Yu J., He J. (2018). Effect of different dietary non-starch fiber fractions on growth performance, nutrient digestibility, and intestinal development in weaned pigs. Nutrition, 51: 20–28.10.1016/j.nut.2018.01.011Search in Google Scholar

Yu Z., Zhang S., Yang Q., Peng Q., Zhu J., Zeng X., Qiao S. (2016). Effect of high fiber diets formulated with different fibrous ingredients on performance, nutrient digestibility and faecal microbiota of weaned piglets. Arch. Anim. Nutr., 70: 263–277.10.1080/1745039X.2016.1183364Search in Google Scholar

Zhang W.J., Li D.F., Liu L., Zang J.J., Duan Q.W., Yang W.J., Zhang L.Y. (2013). The effects of dietary fiber level on nutrient digestibility in growing pigs. J. Anim. Sci. Biotech., 4: 17.10.1186/2049-1891-4-17Search in Google Scholar

Zhang Z.Y., Liu Z.Y., Zhang S., Lai C.H., Ma D.L., Huang C.F. (2019). Effect of inclusion level of corn germ meal on the digestibility and metabolizable energy and evaluation of ileal AA digestibility of corn germ meal fed to growing pigs. J. Anim. Sci., 97: 768–778.10.1093/jas/sky469Search in Google Scholar

Zhao J.B., Liu P., Wu Y., Guo P., Liu L., Ma N., Levesque C., Chen Y., Zhao J.S., Zhang J., Ma X. (2018 a). Dietary fiber increases butyrate-producing bacteria and improves the growth performance of weaned piglets. J. Agric. Food Chem., 66: 7995–8004.10.1021/acs.jafc.8b0254529986139Search in Google Scholar

Zhao J.B., Wang Q., Liu L., Chen Y., Jin A., Liu G., Li K., Li D., Lai C. (2018 b). Comparative digestibility of nutrients and amino acids in high-fiber diets fed to crossbred barrows of Duroc boars crossed with Berkshire × Jiaxing and Landrace × Yorkshire. Asian-Australas. J. Anim. Sci., 31: 721–728.10.5713/ajas.17.0344593028328920415Search in Google Scholar

Zhao J.B., Zhang S., Xie F., Li D., Huang C. (2018 c). Effects of inclusion level and adaptation period on nutrient digestibility and digestible energy of wheat bran in growing-finishing pigs. Asian-Australas. J. Anim. Sci., 31: 116–122.10.5713/ajas.17.0277575691228728365Search in Google Scholar

Zhao J.B., Bai Y., Tao S., Zhang G., Wang J., Liu L., Zhang S. (2019 a). Fiber-rich foods affects gut bacterial community and short-chain fatty acids production in pig model. J. Funct. Foods., 57: 266–274.10.1016/j.jff.2019.04.009Search in Google Scholar

Zhao J.B., Zhang G., Dong W.X., Zhang Y., Wang J.J., Liu L., Zhang S. (2019 b). Effects of dietary particle size and fiber source on nutrient digestibility and short chain fatty acid production in cannulated growing pigs. Anim. Feed Sci. Technol., 258: 114310.10.1016/j.anifeedsci.2019.114310Search in Google Scholar

Zhao J.B., Bai Y., Zhang G., Liu L., Lai C.H. (2020 a). Relationship between dietary fiber fermentation and volatile fatty acids’ concentration in growing pigs. Animals, 10: 263.10.3390/ani10020263707077632045993Search in Google Scholar

Zhao J.B., Zhang G., Liu L., Wang J., Zhang S. (2020 b). Effects of fibre-degrading enzymes in combination with different sources on ileal and total tract nutrient digestibility and fermentation products in pigs. Arch. Anim. Nutr., 74: 309–324.10.1080/1745039X.2020.176633332441546Search in Google Scholar

Zhao J.B., Liu X.Z., Zhang Y., Liu L., Wang W.W., Zhang S. (2020 c). Effects of body weight and fiber sources on fiber digestibility and short chain fatty acid concentration in growing pigs. Asian-Australas. J. Anim. Sci., 33: 1975–1984.10.5713/ajas.19.0713764940832054171Search in Google Scholar

Zijlstra R.T., Owusu-Asiedu A., Simmins P.H. (2010). Future of NSPdegrading enzymes to improve nutrient utilization of co-products and gut health in pigs. Livest. Sci., 134: 255–257.10.1016/j.livsci.2010.07.017Search in Google Scholar

eISSN:
2300-8733
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine