[Adams A.M., Pratt S.L., Gibbons J.R., Arat S., Respess D.S., Stice S.L. (2004). Production of a cloned calf using kidney cells obtained from a 48-hour cooled carcass. Reprod. Fert. Develop., 16: 133–292.]Search in Google Scholar
[Alexander B., Coppola G., Perrault S.D., Peura T.T, Betts D.H., King W.A. (2007). Telomere length status of somatic cell sheep clones and their offspring. Mol. Reprod. Dev., 74: 1525–1537.]Search in Google Scholar
[Ambrosi D.J., Rasmussen T.P. (2005). Reprogramming mediated by stem cell fusion. J. Cell. Mol. Med., 9: 320–330.]Search in Google Scholar
[An Q., Peng W., Cheng Y., Lu Z., Zhou C., Zhang Y., Su J. (2019). Melatonin supplementation during in vitro maturation of oocyte enhances subsequent development of bovine cloned embryos. J. Cell. Physiol., 234: 17370–17381.]Search in Google Scholar
[Arat S., Bagis H., Odaman Mercan H., Dinnyes A. (2005). Cloned embryos can be produced using donor cells obtained from a 72-hour cooled carcass. Reprod. Fert. Develop., 17: 164–164.]Search in Google Scholar
[Baguisi A., Behboodi E., Melican D.T., Pollock J.S., Destrempes M.M., Cammuso C., Williams J.L., Nims S.D., Porter C.A., Midura P., Palacios M.J., Ayres S.L., Denniston R.S., Hayes M.L., Ziomek C.A., Meade H.M., Godke R.A., Gavin W.G., Overström E.W., Echelard Y. (1999). Production of goats by somatic cell nuclear transfer. Nat. Biotechnol., 17: 456–461.]Search in Google Scholar
[Batchelder C.A., Hoffert K.A., Bertolini M., Moyer A.L., Mason J.B., Petkov S.G., Famula T.R., Anderson G.B. (2005). Effect of nuclear-donor cell lineage, type and cell donor on development of somatic cell nuclear transfer in cattle. Cloning Stem Cells, 4: 238–254.]Search in Google Scholar
[Berg D.K., Li C., Asher G., Wells D.N., Oback B. (2007). Red deer cloned from antler stem cells and their differentiated progeny. Biol. Reprod., 77: 384–394.]Search in Google Scholar
[Betts D., Bordignon V., Hill J., Winger Q., Westhusin M., Smith L., King W.A. (2001). Reprogramming of telomerase activity and rebuilding of telomere length in cloned cattle. Proc. Natl. Acad. Sci. USA., 98: 1077–1082.]Search in Google Scholar
[Blackburn E.H. (1991). The structure and function of telomeres. Nature, 350: 569–573.]Search in Google Scholar
[Boiani M., Eckartd S., Leu N.A., Schöler H.R., Mc Laughlin K.J. (2003). Pluripotency deficit in clones overcome by clone aggregation: epigenetic complementation? EMBO J., 22: 5304–5312.]Search in Google Scholar
[Boquest C.A., Day N.B., Prather S.R. (1999). Flow cytometric cell cycle analysis of cultured porcine fetal fibroblast cells. Biol. Reprod., 60: 1013–1019.]Search in Google Scholar
[Buemo C.P., Gambini A., Moro L.N., Hiriart M.I., Fernandez-Martini R., Collas P., Salamone D.F. (2016). Embryo aggregation in pig improves cloning efficiency and embryo quality. PLoS One, 11(2): e0146390.]Search in Google Scholar
[Campbell K.H., Loi P., Otaegui P.J., Wilmut I. (1996 a). Cell cycle co-ordination in embryo cloning by nuclear transfer. Rev. Reprod., 1: 40–46.10.1530/ror.0.00100409414437]Search in Google Scholar
[Campbell K.H., Mc Whir J., Ritchie W.A., Wilmut I. (1996 b). Sheep cloned by nuclear transfer from a cultured cell line. Nature, 380: 64–66.10.1038/380064a08598906]Search in Google Scholar
[Cao Z., Li Y., Chen Z., Wang H., Zhang M., Zhou N., Wu R., Ling Y., Fang F., Li N., Zhang Y. (2015). Genome-wide dynamic profiling of histone methylation during nuclear transfermediated porcine somatic cell reprogramming. PLoS One, 10(12), e0144897.10.1371/journal.pone.0144897468769326683029]Search in Google Scholar
[Chang C.C., Gao S., Sung L.Y., Corry G.N., Ma Y., Nagy Z.P., Tian X.C., Rasmussen T.P. (2010). Rapid elimination of the histone variant MacroH2A from somatic cell heterochromatin after nuclear transfer. Cell. Reprogram., 12: 43–53.]Search in Google Scholar
[Chen Y., Xu Z.H.E., Liu A., Wang K., Mao W.W., Chu J.X., Lu Y., Fang Z.F., Shi Y.T., Yang Q.Z., Chen D.Y., Wang M.K., Li J.S., Huang S.L., Kong X.Y., Shi Y.Z., Wang Z.Q., Xia J.H., Long Z.G., Xue Z.G., Ding W.X., Sheng H.Z. (2003). Embryonic stem cells generated by nuclear transfer of human somatic nuclei into rabbit oocytes. Cell Res., 13: 251–263.]Search in Google Scholar
[Chesne P., Adenot P.G., Viglietta C., Baratte M., Boulanger L., Renard J.P. (2002). Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat. Biotechnol., 20: 366–369.]Search in Google Scholar
[Choi I., Campbell K.H.S. (2010). Treatment of ovine oocytes with caffeine increases the accessibility of DNase I to the donor chromatin and reduces apoptosis in somatic cell nuclear transfer embryos. Reprod. Fert. Develop., 22: 1000–1014.]Search in Google Scholar
[Choi Y.H., Love C.C., Chung Y.G., Varner D.D., Westhusin M.E., Burghardt R.C., Hinrichs K. (2002). Production of nuclear transfer horse embryos by Piezo-driven injection of somatic nuclei and activation with stallion sperm cytosolic extract. Biol. Reprod., 67: 561–567.]Search in Google Scholar
[Choi Y.H., Ritthaler J., Hinrichs H. (2014). Production of a mitochondrial-DNA identical cloned foal using oocytes recovered from immature follicles of selected mares. Theriogenology, 82: 411–417.]Search in Google Scholar
[Cibelli J.B., Stice S.L., Golueke P.J., Kane J.J., Jerry J., Blackwell C., Ponce de León F.A., Robl J.M. (1998) Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science, 280: 1256–1258.10.1126/science.280.5367.12569596577]Search in Google Scholar
[Costa-Borges N., Santaló J., Ibáñez E. (2010). Comparison between the effects of valproic acid and trichostatin A on the in vitro development, blastocyst quality, and full-term development of mouse somatic cell nuclear transfer embryos. Cell. Reprogram., 12: 437–446.]Search in Google Scholar
[Czernik M., Anzalone D.A., Palazzese L., Oikawa M., Pasqualino L. (2019). Somatic cell nuclear transfer: failures, successes and the challenges ahead. Int. J. Dev. Biol., 63: 123–130.]Search in Google Scholar
[Dalman A., Eftekhari-Yazdi P., Valojredi M.R., Shahverdi A., Gourabi H., Janzamin E., Fakheri R., Sadeghian F., Hasani F. (2010). Synchronizing cell cycle of goat fibroblasts by serum starvation causes apoptosis. Reprod. Dom. Anim., 45: e46–53.]Search in Google Scholar
[Djekidel M.N., Inoue A., Matoba S., Suzuki T., Zhang C., Lu F., Jiang L., Zhang Y. (2018). Reprogramming of chromatin accessibility in somatic cell nuclear transfer is DNA replication independent. Cell. Reprogram., 23: 1939–1947.]Search in Google Scholar
[Eggan K., Akutsu H., Hochedlinger K., Rideout W.3rd, Yanagimachi R., Jaenisch R. (2000). X-Chromosome inactivation in cloned mouse embryos. Science, 290: 1578–1581.]Search in Google Scholar
[Enright B.P., Kubota C., Yang X., Tian X.C. (2003). Epigenetic characteristics and development of embryos cloned from donor cells treated by trichostatin A or 5-aza-2′-deoxycytidine. Biol. Reprod., 69: 896–901.]Search in Google Scholar
[Folch J., Cocero M.J., Chesne P., Alabart J.L., Dominguez V., Cognie Y., Roche A., Fernández-Arias A., Martí J.I., Sánchez P., Echegoyen E., Beckers J.F., Bonastre A.S., Vignon X. (2009). First birth of an animal from an extinct subspecies (Capra pyrenaica pyrenaica) by cloning. Theriogenology, 71: 1026–1034.]Search in Google Scholar
[Galli C., Duchi R., Moor R.M., Lazzari G. (1999). Mammalian leukocytes contain all the genetic information necessary for the development of a new individual. Cloning, 1: 161–170.]Search in Google Scholar
[Galli C., Lagutina I., Crotti G., Colleoni S., Turini P., Ponderato N., Duchi R., Lazzari G. (2003). A cloned horse born to its dam twin. Nature, 424: 635.]Search in Google Scholar
[Gambini A., Maserati M. (2018). A journey through horse cloning. Reprod. Fert. Develop., 30: 8–17.]Search in Google Scholar
[Gao S., Chung Y.G., Parseghian M.H., King G.J., Adashi E.Y., Latham K.E. (2004). Rapid H1 linker histone transitions following fertilization or somatic cell nuclear transfer: Evidence for a uniform developmental program in mice. Dev. Biol., 266: 62–75.]Search in Google Scholar
[Gómez M.C., Pope E., Harris R., Mikota S., Dresser B.L. (2003). Development of in vitro matured, in vitro fertilized domestic cat embryos following cryopreservation, culture and transfer. Theriogenology, 60: 239–251.]Search in Google Scholar
[Gómez M.C., Pope C.E., Giraldo A., Lyons L.A., Harris R.F., King A.L., Cole A., Godke R.A., Dresser B.L. (2004). Birth of African wildcat cloned kittens born from domestic cats. Cloning Stem Cells, 6: 247–258.]Search in Google Scholar
[Gómez M.C., Pope C.E., Kutner R.H., Ricks D.M., Lyons L.A., Ruhe M.D., Dumas C., Lyons J., López M., Dresser B.L., Reiser J. (2008). Nuclear transfer of sand cat cells into enucleated domestic cat oocytes is affected by cryopreservation of donor cells. Cloning Stem Cells, 4: 469–483.]Search in Google Scholar
[Gómez M.C., Biancardi M.N., Jenkins J.A., Dumas C., Galiguis J., Wang G., Earle Pope C. (2012). Scriptaid and 5-aza-2′deoxycytidine enhanced expression of pluripotent genes and in vitro developmental competence in interspecies black-footed cat cloned embryos. Reprod. Domest. Anim., 47 (Suppl 6): 130–135.]Search in Google Scholar
[Gouveia C., Huyser C., Egli D., Pepper M.S. (2020). Lessons learned from somatic cell nuclear transfer. Int. J. Mol. Sci., 21: 2314.]Search in Google Scholar
[Guo Z., Lv L., Liu D., Fu B. (2018). Effects of trichostatin A on pig SCNT blastocyst formation rate and cell number: A meta-analysis. Res. Vet. Sci., 117: 161–166.]Search in Google Scholar
[Gupta M.K., Heo Y.T., Kim D.K., Lee H.T., Uhm S.J. (2019). 5-Azacytidine improves the meiotic maturation and subsequent in vitro development of pig oocytes. Anim. Reprod. Sci., 208: 106118.]Search in Google Scholar
[Gurdon J.B., Laskey R.A., De Robertis E.M., Partington G.A. (1979). Reprogramming of transplanted nuclei in amphibia. Int. Rev. Cytol. (Suppl.), 9: 161–178.]Search in Google Scholar
[Harley C.B., Futcher A.B., Greider C.W. (1990). Telomeres shorten during ageing of human fibroblasts. Nature, 345: 458–460.]Search in Google Scholar
[Hastie N.D., Dempster M., Dunlop M.G., Thompson A.M., Green D.K., Allshire R.C. (1990). Telomere reduction in human colorectal carcinoma and with ageing. Nature, 346: 866–868.]Search in Google Scholar
[Hill J.R. (2014). Incidence of abnormal offspring from cloning and other assisted reproductive technologies. Annu. Rev. Anim. Biosci., 2: 16.1–16.15.]Search in Google Scholar
[Hoshino Y., Hayashi N., Taniguchi S., Kobayashi N., Sakai K., Otani T., Iritani A., Saeki K. (2009). Resurrection of a bull by cloning from organs frozen without cryoprotectant in a −80°C freezer for a decade. PLoS One, 4(1): e4142.]Search in Google Scholar
[Inoue K., Kohda T., Sugimoto M., Sado T., Ogonuki N., Matoba S., Shiura H., Ikeda R., Mochida K., Fujii T., Sawai K., Otte A.P., Tian X.C., Yang X., Ishino F., Abe K., Ogura A. (2010). Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer. Science, 330: 496–499.]Search in Google Scholar
[Iuso D., Czernik M., Zacchini F., Ptak G., Loi P. (2013). A simplified approach for oocyte enucleation in mammalian cloning. Cell. Reprogram., 15: 490–494.]Search in Google Scholar
[Iuso D., Czernik M., Toschi P., Fidanza A., Zacchini F., Feil R., Curtet S., Buchou T., Shiota H., Khochbin S., Ptak G.E., Loi P. (2015). Exogenous expression of human protamine 1 (hPrm1) remodels fibroblast nuclei into spermatid-like structures. Cell Rep., 13: 1765–1771.]Search in Google Scholar
[Jena M.K., Malakar D. (2018). Handmade cloning: a handy technique for reproductive cloning. J. Pharm. Sci. Res. 9: 1564–1568.]Search in Google Scholar
[Jin J.X., Kang J.D., Li S., Jin L., Zhu H.Y., Guo Q., Gao Q.S., Yan C.G., Yin X.J. (2015). PXD101 significantly improves nuclear reprogramming and the in vitro developmental competence of porcine SCNT embryos. Biochem. Biophys. Res. Commun., 456: 156–161.]Search in Google Scholar
[Jin L., Guo Q., Zhang G.L., Xing X.X., Xuan M.F., Luo Q.R., Luo Z.B., Wang J.X., Yin X.J., Kang J.D. (2018). The histone deacetylase inhibitor, CI994, improves nuclear reprogramming and in vitro developmental potential of cloned pig embryos. Cell. Reprogram., 20: 205–213.]Search in Google Scholar
[Kato Y., Tani T., Tsunoda Y. (2000). Cloning of calves from various somatic cell types of male and female adult, newborn and fetal cows. J. Reprod. Fertil., 120: 231–237.]Search in Google Scholar
[Kato H., Anzai M., Mitani T., Morita M., Nishiyama Y., Nakao A., Kondo K., Lazarev P.A., Ohtani T., Shibata Y., Iritani A. (2009). Recovery of cell nuclei from 15,000 years old mammoth tissues and its injection into mouse enucleated matured oocytes. Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci., 85: 240–247.]Search in Google Scholar
[Khammanit R., Chantarku S., Kitiyanat Y., Saikhun J. (2008). Effect of serum starvation and chemical inhibitors on cell cycle synchronization of canine dermal fibroblasts. Theriogenology, 70: 27–34.]Search in Google Scholar
[Kikyo N., Wade P.A., Guschin D., Ge H., Wolffe A.P. (2000). Active remodeling of somatic nuclei in egg cytoplasm by the nucleosomal ATPase ISWI. Science, 289: 2360–2362.]Search in Google Scholar
[Kim J.M., Ogura A., Nagata M., Aoki F. (2002). Analysis of the mechanism for chromatin remodeling in embryos reconstructed by somatic nuclear transfer. Biol. Reprod., 67: 760–766.]Search in Google Scholar
[Kishigami S., Mizutani E., Ohta H., Hikichi T., Thuan N.V., Wakayama S., Bui H.T., Wakayama T. (2006). Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer. Biochem. Biophys. Res. Commun., 340: 183–189.]Search in Google Scholar
[Kuwayama H., Tanabe Y., Wakayama T., Kishigami A. (2017). Birth of cloned mice from vaginal smear cells after somatic cell nuclear transfer. Theriogenology, 94: 79–85.]Search in Google Scholar
[Lagutina I., Lazzari G., Duchi R., Colleoni S., Ponderato N., Turin P., Crotti G., Galli C. (2005). Somatic cell nuclear transfer in horses: effect of oocyte morphology, embryo reconstruction method and donor cell type. Reproduction, 130: 559–567.]Search in Google Scholar
[Lagutina I., Lazzari G., Galli C. (2006). Birth of cloned pigs from zona-free nuclear transfer blastocysts developed in vitro before transfer. Cloning Stem Cells, 8: 283–293.]Search in Google Scholar
[Lanza R.P., Cibelli J.B., Blackwell C., Cristofalo V.J., Francis M.K., Baerlocher G.M., Mak J., Schertzer M., Chavez E.A., Sawyer N., Lansdorp P.M., West M.D. (2000). Extension of cell line lifespan and telomere length in animals cloned from senescent somatic cells. Science, 288: 665–669.]Search in Google Scholar
[Lee J.W., Wu S.C., Tian X.C., Barber M., Hoagland T., Riesen J., Lee K.H., Tu C.F., Cheng W.T., Yang X. (2003). Production of cloned pigs by whole-cell intracytoplasmic microinjection. Biol. Reprod., 69: 995–1001.]Search in Google Scholar
[Lee B.C., Kim M.K., Jang G., Oh H.J., Yuda F., Kim H.J. (2005). Dogs cloned from adult somatic cells. Nature, 436: 641.]Search in Google Scholar
[Lee J.H., Peters A., Fisher P., Bowles E.J., St John J.C., Campbell K.H. (2010). Generation of mtDNA homoplasmic cloned lambs. Cell. Reprogram., 12: 347–355.]Search in Google Scholar
[Lee H.S., Yu X.F., Bang J.I., Cho S.J., Deb G.K., Kim B.W., Kong I.K. (2010 a). Enhanced histone acetylation in somatic cells induced by a histone deacetylase inhibitor improved inter-generic cloned leopard cat blastocysts. Theriogenology, 74: 1439–1449.10.1016/j.theriogenology.2010.06.01620708232]Search in Google Scholar
[Lee S.L., Kang E.J., Maeng G.H., Kim M.J., Park J.K., Kim T.S., Hyun S.H., Lee E.S., Rho G.J. (2010 b). Developmental ability of miniature pig embryos cloned with mesenchymal stem cells. J. Reprod. Dev., 56: 256–262.10.1262/jrd.09-196A]Search in Google Scholar
[Lee K., Davis A., Zhang L., Ryu J., Spate L.D., Park K.W., Samuel M.S., Walters E.M., Murphy C.N., Machaty Z., Prather R.S. (2015). Pig oocyte activation using a Zn2+ chelator, TPEN. Theriogenology, 84: 1024–1032.]Search in Google Scholar
[Lee S.C., Lee H., Oh K.B., Hwang I.S., Yang H., Park M.R., Ock S.A., Woo J.S., Im G.S., Hwang S. (2017). Production and breeding of transgenic cloned pigs expressing human CD73. Dev. Reprod., 21: 157–165.]Search in Google Scholar
[Lee J., Lee Y., Lee G.S., Lee S.T., Lee E. (2019). Comparative study of the developmental competence of cloned pig embryos derived from spermatogonial stem cells and fetal fibroblasts. Reprod. Domest. Anim., 54: 1258–1264.]Search in Google Scholar
[Li J., Chen D., Han Z., Zhu Z., Wen D., Sun Q., Liu Z., Wang M., Lian L., Du J., Wang P.Zhang H. (2002). Serial nuclear transfer improves the development of interspecies reconstructed giant panda (Ailuropoda melanoleuca) embryos. Chin. Sci. Bull., 47: 467–469.]Search in Google Scholar
[Li X., Li Z., Jouneau A., Zhou Q., Renard J.P. (2003). Nuclear transfer: Progress and quandaries. Reprod. Biol. Endocrinol., 1: 84.]Search in Google Scholar
[Li Z., Sun X., Chen J., Liu X., Wisely S.M., Zhou Q., Renard J.P., Leno G.H., Engelhardt J.F. (2006). Cloned ferret produced by somatic cell nuclear transfer. Dev. Biol., 293: 439–448.]Search in Google Scholar
[Li R., Murphy C.N., Spate L., Wax D., Isom C., Rieke A., Walters E.M., Samuel M., Prather R.S. (2009). Production of piglets after cryopreservation of embryos using a centrifugation- based method for delipation without micromanipulation. Biol. Reprod., 80: 563–571.]Search in Google Scholar
[Li Z., He X., Chen L., Shi J., Zhou R., Xu W., Liu D., Wu Z. (2013). Bone marrow mesenchymal stem cells are an attractive donor cell type for production of cloned pigs as well as genetically modified cloned pigs by somatic cell nuclear transfer. Cell. Reprogram., 15: 459–470.]Search in Google Scholar
[Liu Z., Cai Y., Wang Y., Nie Y., Zhang C., Xu Y., Zhang X., Lu Y., Wang Z., Poo M., Sun Q. (2018). Cloning of macaque monkeys by somatic cell nuclear transfer. Cell, 172: 881–887. e7.]Search in Google Scholar
[Loi P., Clinton M., Barboni B., Fulka Jr.J., Cappai P., Feil R., Moor R.M., Ptak G. (2002). Nuclei of nonviable ovine somatic cells develop into lambs after nuclear transplantation. Biol. Reprod., 67: 126–132.]Search in Google Scholar
[Loi P., Matsukawa K., Ptak G., Clinton M., Fulka Jr J., Nathan Y., Arav A. (2008). Freeze-dried somatic cells direct embryonic development after nuclear transfer. PLoS One, 3: e2978.]Search in Google Scholar
[Loi P., Modlinski J.A., Ptak G. (2011). Interspecies somatic cell nuclear transfer: a salvage tool seeking first aid. Theriogenology, 76: 217–228.]Search in Google Scholar
[Loi P., Saragusty J., Ptak G. (2014). Cloning the mammoth: a complicated task or just a dream? Adv. Exp. Med. Biol., 753: 489–502.]Search in Google Scholar
[Loi P., Iuso D., Czernik M., Ogura A. (2016). A new, dynamic era for somatic cell nuclear transfer? Trends Biotechnol., 34: 791–797.]Search in Google Scholar
[Luo Y., Wang Y., Liu J., Lan H., Shao M., Yu Y., Quan F., Zhang Y. (2015). Production of transgenic cattle highly expressing human serum albumin in milk by phiC31 integrase-mediated gene delivery. Transgenic Res., 24: 875–883.]Search in Google Scholar
[Ma L.B., He X.Y., Wang F.M., Cheng T., Liu X.Y. (2014). Somatic cell reprogrammed by oocyte: process and barricade. Anim. Cells Syst. (Seoul), 18: 161–171.]Search in Google Scholar
[Macháty Z., Wang W.H., Day B.N., Prather R.S. (1997). Complete activation of porcine oocytes induced by the sulfhydryl reagent, thimerosal. Biol. Reprod., 57: 1123–1127.]Search in Google Scholar
[Madheshiya P.K., Sahare A.A., Jyotsana B., Singh K.P., Saini M., Raja A.K., Kaith S., Singla S.K., Chauhan M.S., Manik R.S., Palta P. (2015). Production of a cloned buffalo (Bubalus bubalis) calf from somatic cells isolated from urine. Cell. Reprogram., 3: 160–169.]Search in Google Scholar
[Mahdi E., Fakhrisadat H. (2012). Handmade cloning: an alternative technique for somatic cell nuclear transfer. Ann. Biol. Res., 3: 3043–3048.]Search in Google Scholar
[Mann R.W.M., Bartolomei M.S. (2002). Epigenetic reprogramming in the mammalian embryo: struggle of the clones. Genome Biol., 3: 1003.1–1003.4.]Search in Google Scholar
[Mann M.R., Chung Y.G., Nolen L.D., Verona R.I., Latham K.E., Bartolomei M.S. (2003). Disruption of imprinted gene methylation and expression in cloned preimplantation stage mouse embryos. Biol. Reprod., 69: 902–914.]Search in Google Scholar
[Matoba S., Zhang Y. (2018). Somatic cell nuclear transfer reprogramming: mechanisms and applications. Cell Stem Cell., 23: 471–585.]Search in Google Scholar
[Matoba S., Liu Y., Lu F., Iwabuchi K.A., Shen L., Inoue A., Zhang Y. (2014). Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation. Cell, 159: 884–895.]Search in Google Scholar
[Mitalipov S., Wolf D. (2009). Totipotency, pluripotency and nuclear reprogramming. Adv. Biochem. Eng. Biotechnol., 114: 185–199.]Search in Google Scholar
[Mizutani E., Ohta H., Kishigami S., Van Thuan N., Hikichi T., Wakayam S., Ko-saka M., Sato E., Wakayama T. (2006). Developmental ability of cloned embryos from neural stem cells, Reproduction, 132: 849–857.10.1530/rep.1.0101017127745]Search in Google Scholar
[Nashun B., Akiyama T., Suzuki M.G., Aoki F. (2011). Dramatic replacement of histone variants during genome remodeling in nuclear-transferred embryos. Epigenetics, 6: 1489–1497.]Search in Google Scholar
[Niemann H. (2016). Epigenetic reprogramming in mammalian species after SCNT-based cloning. Theriogenology, 86: 80–90.]Search in Google Scholar
[Niemann H., Lucas-Hahn A. (2012). Somatic cell nuclear transfer cloning: Practical application and current legislation. Reprod. Dom. Anim., 47: 2–10.]Search in Google Scholar
[Niemann H., Tian X.C., King W.A., Lee R.S.F. (2008). Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer. Reproduction, 135: 151–163.]Search in Google Scholar
[Nowak-Imialek M., Kues W.A., Carnwath J.W., Niemann H. (2011). Pluripotent stem cells and reprogrammed cells in farm animals. Microsc. Microanal., 17: 474–497.]Search in Google Scholar
[Oback B., Wells D. (2002). Donor cells for nuclear cloning: many are called, but few are chosen. Cloning Stem Cells, 4: 147–168.]Search in Google Scholar
[Ogura A., Inoue K., Takano K., Wakayama T., Yanagimachi R. (2000). Birth of mice after nuclear transfer by electrofusion using tail tip cells. Mol. Reprod. Dev., 57: 55–59.]Search in Google Scholar
[Olivera R., Moro L.N., Jordan R., Luzzani C., Miriuka S., Radrizzani M., Donadeu F.X., Vichera G. (2016). In vitro and in vivo development of horse cloned embryos generated with iPSCs, mesenchymal stromal cells and fetal or adult fibroblasts as nuclear donors. PLoS One 11 (10): e0164049.]Search in Google Scholar
[Olivera R., Moro L.N., Jordan R., Pallarols N., Guglielminetti A., Luzzani C., Miriuka S.G., Vichera G. (2018). Bone marrow mesenchymal stem cells as nuclear donors improve viability and health of cloned horses. Stem Cells Cloning, 11: 13–22.]Search in Google Scholar
[Ono T., Mizutani E., Li C., Wakayama T. (2008). Nuclear transfer preserves the nuclear genome freeze-dried mouse cells. J. Reprod. Dev., 54: 486–491.]Search in Google Scholar
[Ono Y., Shimozawa N., Ito M., Kono T. (2001). Cloned mice from fetal fibroblast cells arrested at metaphase by a serial nuclear transfer. Biol. Reprod., 64: 44–50.]Search in Google Scholar
[Opiela J., Samiec M. (2013). Characterization of mesenchymal stem cells and their application in experimental embryology. Pol. J. Vet. Sci., 16: 593–599.]Search in Google Scholar
[Opiela J., Samiec M., Bochenek M., Lipiński D., Romanek J., Wilczek P. (2013). DNA aneuploidy in porcine bone marrow-derived mesenchymal stem cells undergoing osteogenic and adipogenic in vitro differentiation. Cell. Reprogram., 15: 425–434.]Search in Google Scholar
[Opiela J., Samiec M., Romanek J. (2017). In vitro development and cytological quality of inter- species (porcine→bovine) cloned embryos are affected by trichostatin A-dependent epigenomic modulation of adult mesenchymal stem cells. Theriogenology, 97: 27–33.]Search in Google Scholar
[Park D.S., Cerrone M., Morley G., Vasquez C., Fowler S., Liu N., Bernstein S.A., Liu F.Y., Zhang J., Rogers C.S., Priori S.G., Chinitz L.A., Fishman G.I. (2015) Genetically engineered SCN5A mutant pig hearts exhibit conduction defects and arrhythmias. J. Clin. Invest., 125: 403–412.]Search in Google Scholar
[Poleajeva I.A., Chen S.H., Vaught T.D., Page R.L., Mullins J., Ball S., Dai Y., Boone J., Walker S., Ayares D.L., Colman A., Campbell K.H. (2000). Cloned pigs produced by nuclear transfer from adult somatic cells. Nature, 407: 505–509.]Search in Google Scholar
[Prather R.S., Kuhholzer B., Lai L., Park K.W. (2000). Changes in the structure of nuclei after transfer to oocytes. Cloning, 2: 117–122.]Search in Google Scholar
[Priya D., Selokar N.L., Raja A.K., Saini M., Sahare A.A., Nala N., Palta P., Chauhan M.S., Manik R.S., Singla S.K. (2014). Production of wild buffalo (Bubalus arnee) embryos by interspecies somatic cell transfer using domestic buffalo (Bubalus bubalis) oocytes. Reprod. Dom. Anim., 49: 343–351.]Search in Google Scholar
[Rakha A. (2015). Cloning efficiency and a comparison between donor cell types. Cloning Transgen., 4: 141.]Search in Google Scholar
[Richter A., Kurome M., Kessler B., Zakhartchenko V., Klymiuk N., Nagashi-ma H., Wolf E., Wuensch A. (2012). Potential of primary kidney cells for somatic cell nuclear transfer mediated transgenesis in pig. BMC Biotechnol., 12: 84.]Search in Google Scholar
[Rideout W.M.3rd., Eggan K., Jaenisch R. (2001). Nuclear cloning and epigenetic reprogramming of the genome. Science, 293: 1093–1098.]Search in Google Scholar
[Saadeldin I.M., Kim S.J., Choi Y.B., Lee B.C. (2014). Improvement of cloned embryos development by co-culturing with parthenotes: a possible role of exosomes/microvesicles for embryos paracrine communication. Cell. Reprogram., 16: 223–234.]Search in Google Scholar
[Saeki K., Hoshino Y., Taniguchi S. (2014). Biological age of cloned animals. Principles of Cloning. 2nd ed., 33: 419–428.]Search in Google Scholar
[Saini M., Selokar N.L., Agrawal H., Singla S.K., Chauhan M.S., Manik R.S., Pal-ta P. (2006). Treatment of buffalo (Bubalus bubalis) donor cells with trichostatin A and 5-aza-2’- deoxycytidine alters their growth characteristics, gene expression and epigenetic status of cloned embryos. Reprod. Fert. Develop., 28: 824–837.]Search in Google Scholar
[Samiec M. (2004). Development of pig cloning studies: past, present and future. J. Anim. Feed Sci., 13: 211–238.]Search in Google Scholar
[Samiec M. (2005 a). The effect of mitochondrial genome on architectural remodeling and epigenetic reprogramming of donor cell nuclei in mammalian nuclear transfer-derived embryos. J. Anim. Feed Sci., 14: 393–422.10.22358/jafs/67034/2005]Search in Google Scholar
[Samiec M. (2005 b). The role of mitochondrial genome (mtDNA) in somatic and embryo cloning of mammals. A review. J. Anim. Feed Sci., 14: 213–233.10.22358/jafs/67008/2005]Search in Google Scholar
[Samiec M., Skrzyszowska M. (2005 a). Molecular conditions of the cell nucleus remodelling/reprogramming process and nuclear-transferred embryo development in the intraooplasmic karyoplast injection technique: a review. Czech J. Anim. Sci., 50: 185–195.10.17221/4142-CJAS]Search in Google Scholar
[Samiec M., Skrzyszowska M. (2005 b). Microsurgical nuclear transfer by intraooplasmic karyoplast injection as an alternative embryo reconstruction method in somatic cloning of pigs and other mammal species; application value of the method and its technical advantages: a review. Czech J. Anim. Sci., 50: 235–242.10.17221/4163-CJAS]Search in Google Scholar
[Samiec M., Skrzyszowska M. (2010 a). Preimplantation developmental capability of cloned pig embryos derived from different types of nuclear donor somatic cells. Ann. Anim. Sci., 10: 385–398.]Search in Google Scholar
[Samiec M., Skrzyszowska M. (2010 b). The use of different methods of oocyte activation for generation of porcine fibroblast cell nuclear-transferred embryos. Ann. Anim. Sci., 10: 399–411.]Search in Google Scholar
[Samiec M., Skrzyszowska M. (2011 a). Transgenic mammalian species, generated by somatic cell cloning, in biomedicine, biopharmaceutical industry and human nutrition/dietetics – recent achievements. Pol. J. Vet. Sci., 14: 317–328.10.2478/v10181-011-0050-721721422]Search in Google Scholar
[Samiec M., Skrzyszowska M. (2011 b). The possibilities of practical application of transgenic mammalian species generated by somatic cell cloning in pharmacology, veterinary medicine and xenotransplantology. Pol. J. Vet. Sci., 14: 329–340.10.2478/v10181-011-0051-621721423]Search in Google Scholar
[Samiec M., Skrzyszowska M. (2012 a). Roscovitine is a novel agent that can be used for the activation of porcine oocytes reconstructed with adult cutaneous or fetal fibroblast cell nuclei. Theriogenology, 78: 1855–1867.10.1016/j.theriogenology.2012.06.02922979963]Search in Google Scholar
[Samiec M., Skrzyszowska M. (2012 b). High developmental capability of porcine cloned embryos following trichostatin A-dependent epigenomic transformation during in vitro maturation of oocytes pre-exposed to R-roscovitine. Anim. Sci. Pap. Rep., 30: 383–393.]Search in Google Scholar
[Samiec M., Skrzyszowska M. (2013). Assessment of in vitro developmental capacity of porcine nuclear-transferred embryos reconstituted with cumulus oophorus cells undergoing vital diagnostics for apoptosis detection. Ann. Anim. Sci., 13: 513–529.]Search in Google Scholar
[Samiec M., Skrzyszowska M. (2014). Biological transcomplementary activation as a novel and effective strategy applied to the generation of porcine somatic cell cloned embryos. Reprod. Biol., 14: 128–139.]Search in Google Scholar
[Samiec M., Skrzyszowska M. (2018 a). Can reprogramming of overall epigenetic memory and specific parental genomic imprinting memory within donor cell-inherited nuclear genome be a major hindrance for the somatic cell cloning of mammals? – a review. Ann. Anim. Sci., 18: 623–638.10.2478/aoas-2018-0015]Search in Google Scholar
[Samiec M., Skrzyszowska M. (2018 b). Intrinsic and extrinsic molecular determinants or modulators for epigenetic remodeling and reprogramming of somatic cell-derived genome in mammalian nuclear-transferred oocytes and resultant embryos. Pol. J. Vet. Sci., 21: 217–227.]Search in Google Scholar
[Samiec M., Skrzyszowska M., Lipiński D. (2012). Pseudophysiological transcomplementary activation of reconstructed oocytes as a highly efficient method used for producing nucleartransferred pig embryos originating from transgenic foetal fibroblast cells. Pol. J. Vet. Sci., 15: 509–516.]Search in Google Scholar
[Samiec M., Skrzyszowska M., Opiela J. (2013 a). Creation of cloned pig embryos using contact-inhibited or serum-starved fibroblast cells analysed intra vitam for apoptosis occurrence. Ann. Anim. Sci., 13: 275–293.10.2478/aoas-2013-0009]Search in Google Scholar
[Samiec M., Skrzyszowska M., Bochenek M. (2013 b). In vitro development of porcine nuclear-transferred embryos derived from fibroblast cells analysed cytometrically for apoptosis incidence and accuracy of cell cycle synchronization at the G0/G1 stages. Ann. Anim. Sci., 13: 735–752.10.2478/aoas-2013-0049]Search in Google Scholar
[Samiec M., Opiela J., Lipiński D., Romanek J. (2015). Trichostatin A-mediated epigenetic transformation of adult bone marrow-derived mesenchymal stem cells biases the in vitro developmental capability, quality, and pluripotency extent of porcine cloned embryos. Biomed Res. Int., 2015: 814686.]Search in Google Scholar
[Samiec M., Romanek J., Lipiński D., Opiela J. (2019). Expression of pluripotency-related genes is highly dependent on trichostatin A-assisted epigenomic modulation of porcine mesenchymal stem cells analysed for apoptosis and subsequently used for generating cloned embryos. Anim. Sci. J., 90: 1127–1141.]Search in Google Scholar
[Saunders C.M., Larman M.G., Parrington J., Cox L.J., Royse J., Blayney L.M., Swann K., Lai F.A. (2002). PLC zeta: a sperm-specific trigger of Ca2+ oscillations in eggs and embryo development. Development, 129: 3533–3544.]Search in Google Scholar
[Schaetzlein S., Lucas-Hahn A., Lemme E., Kues W.A., Dorsch M., Manns M.P., Niemann H., Rudolph K.L. (2004). Telomere length is reset during early mammalian embryogenesis. Proc. Natl. Acad. Sci. USA, 101: 8034–8038.]Search in Google Scholar
[Schultz R.M. (1993). Regulation of zygotic gene activation in the mouse. Bioessays, 15: 531–538.]Search in Google Scholar
[Schurmann A., Wells D.N., Oback B. (2006). Early zygotes are suitable recipients for bovine somatic nuclear transfer and result in cloned offspring. Reproduction, 132: 839–848.]Search in Google Scholar
[Selokar N.L., Saini M., Agrawal H., Palta P., Chauhan M.S., Manik R., Singla S.K. (2016). Buffalo (Bubalus bubalis) SCNT embryos produced from somatic cells isolated from frozen-thawed semen: effect of trichostatin A on the in vitro and in vivo developmental potential, quality and epigenetic status. Zygote, 4: 549–553.]Search in Google Scholar
[Shiels P.G., Kind A.J., Campbell K.H., Waddington D., Wilmut I., Colman A., Schnieke A.E. (1999). Analysis of telomere lengths in cloned sheep. Nature, 399: 316–317.]Search in Google Scholar
[Shin T.Y., Kraemer D., Pryor J., Liu L., Rugila J., Howe L., Buck S., Murphy K., Lyons L., Westhusin M. (2002). A cat cloned by nuclear transplantation. Nature, 415: 859.]Search in Google Scholar
[Shufaro Y., Reubinoff B.E. (2017). Nuclear treatment and cell cycle synchronization for the purpose of mammalian and primate somatic cell nuclear transfer (SCNT). Humana Press, New York, NY. Methods Mol. Biol., 1524: 289–298.]Search in Google Scholar
[Skrzyszowska M., Samiec M. (2020). Enhancement of in vitro developmental outcome of cloned goat embryos after epigenetic modulation of somatic cell-inherited nuclear genome with trichostatin A. Ann. Anim. Sci., 20: 97–108.]Search in Google Scholar
[Skrzyszowska M., Kątska L., Ryńska B., Kania G., Smorąg Z., Pieńkowski M. (2002). In vitro developmental competence of domestic cat embryos after somatic cloning: a preliminary report. Theriogenology, 58: 1615–1621.]Search in Google Scholar
[Skrzyszowska M., Smorąg Z., Słomski R., Kątska-Książkiewicz L., Kalak R., Michalak E., Wielgus K., Lehmann J., Lipiński D., Szalata M., Pławski A., Samiec M., Jura J., Gajda B., Ryńska B., Pieńkowski M. (2006). Generation of transgenic rabbits by the novel technique of chimeric somatic cell cloning. Biol. Reprod., 74: 1114–1120.]Search in Google Scholar
[Skrzyszowska M., Samiec M., Słomski R., Lipiński D., Mały E. (2008). Development of porcine transgenic nuclear-transferred embryos derived from fibroblast cells transfected by the novel technique of nucleofection or standard lipofection. Theriogenology, 70: 248–259.]Search in Google Scholar
[Song S.H., Lee K.L., Xu L., Joo M.D., Hwang J.Y., Oh S.H., Kong I.K. (2019). Production of cloned cats using additional complimentary cytoplasm. Anim. Reprod. Sci., 208: 106125.]Search in Google Scholar
[Srirattana K., St.John J.C. (2017). Manipulating the mitochondrial genome to enhance cattle embryo development. G3 (Bethesda), 7: 2065–2080.]Search in Google Scholar
[Steinborn R., Schinogl P., Wells D.N., Bergthaler A., Muller M., Brem G. (2002). Coexistence of Bos taurus and Bos indicus mitochondrial DNAs in nuclear transfer-derived somatic cattle clones. Genetics, 162: 823–829.]Search in Google Scholar
[Strahl B.D., Allis C.D. (2000). The language of covalent histone modifications. Nature, 403: 41–45.]Search in Google Scholar
[Sullivan E.J, Kasinathan S., Kasinathan P., Robl J.M., Collas P. (2004). Cloned calves from chromatin remodeled in vitro. Biol. Reprod., 70: 146–153.]Search in Google Scholar
[Sun J.M., Spencer V.A., Chen H.Y., Li L., Davie J.R. (2003). Measurement of histone acetyltransferase and histone deacetylase activities and kinetics of histone acetylation. Methods, 31: 12–23.]Search in Google Scholar
[Suzuki T., Yoshida N., Suzuki E., Okuda E., Perry A.C. (2010). Full-term mouse development by abolishing Zn2+-dependent metaphase II arrest without Ca2+ release. Development, 137: 2659–2669.]Search in Google Scholar
[Tachibana M., Amato P., Sparman M., Gutierrez N.M., Tippner-Hedges R., Ma H., Kang E., Fulati A., Lee H.S., Sritanaudomchai H., Masterson K., Larson J., Eaton D., Sadler-Fredd K., Battaglia D., Lee D., Wu D., Jensen J., Patton P., Gokhale S., Stouffer R.L., Wolf D., Mitalipov S. (2013). Human embryonic stem cells derived by somatic cell nuclear transfer. Cell, 153: 1228–1238.]Search in Google Scholar
[Tamada H., Kikyo N. (2004). Nuclear reprogramming in mammalian somatic cell nuclear cloning. Cytogenet. Genome. Res., 105: 285–291.]Search in Google Scholar
[Tanabe Y., Kuwayama H., Wakayama S., Nagatomo H., Ooga M., Kamimura S., Kishigami S., Wakayama T. (2017). Production of cloned mice using oocytes derived from ICR-outbred strain. Reproduction, 154: 859–866.]Search in Google Scholar
[Tao T., Machaty Z., Abeydeera L.R., Day B.N., Prather R.S. (2000). Optimization of porcine oocyte activation following nuclear transfer. Zygote, 8: 69–77.]Search in Google Scholar
[Tecirlioglu R.T., French A.J., Lewis I.M., Vajta G., Korfiatis N.A., Hall V.J., Rud-dock N.T., Cooney M.A., Trounson A.O. (2003). Birth of a cloned calf derived from a vitrified hand-made cloned embryo. Reprod. Fert. Develop., 15: 361–366.]Search in Google Scholar
[Tian X.C., Kubota C., Enright B., Yang X. (2003). Cloning animals by somatic cell nuclear transfer-biological factors. Reprod. Biol. Endocrinol., 13: 98.]Search in Google Scholar
[Tian X.C., Xu J., Yang X. (2000). Normal telomere length found in cattle. Nat. Genet., 26: 272–273.]Search in Google Scholar
[Tong W.F., Ng Y.F., Ng S.C. (2002). Somatic cell nuclear transfer (cloning): Implications for the medical practitioner. Singapore Med. J., 43: 369–376.]Search in Google Scholar
[Vajta G. (2007). Handmade cloning: the future way of nuclear transfer? Trends Biotechnol., 25: 250–253.]Search in Google Scholar
[Vajta G., Holm P., Greve T., Callesen H. (1996). Overall efficiency of in vitro embryo production and vitrification in cattle. Theriogenology, 45: 683–689.]Search in Google Scholar
[Vajta G., Peura T.T., Holm P., Paldi A., Greve T., Trounson A.O., Callesen H. (2000). New method for culture of zona-included or zona-free embryos: the well of the well (WOW) system. Mol. Reprod. Dev., 55: 256–264.]Search in Google Scholar
[Vajta G., Lewis I.M., Hyttel P., Thouas G.A., Trounson A.O. (2001). Somatic cell cloning without micromanipulators. Cloning, 3: 89–95.]Search in Google Scholar
[Vajta G., Kragh P.M., Mango N.R., Callesen H. (2005). Hand-made cloning approach: potentials and limitations. Reprod. Fert. Develop., 17: 97–112.]Search in Google Scholar
[Verma G., Arora J.S., Sethi R.S., Mukhopadhyay C.S., Verma R. (2015). Handmade cloning: recent advances, potential and pitfalls. J. Anim. Sci. Biotechnol., 6: 43.]Search in Google Scholar
[Wakayama T., Yanagimachi R. (2001). Mouse cloning with nucleus donor cells of different age and type. Mol. Reprod. Dev., 58: 376–383.]Search in Google Scholar
[Wakayama T., Perry A.C., Zuccotti M., Johnson K.R., Yanagimachi R. (1998). Fullterm development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature, 394: 369–374.]Search in Google Scholar
[Wakayama S., Ohta H., Hikichi T., Mizutani E., Iwaki T., Kanagawa O., Wakaya-ma T. (2008). Production of healthy cloned mice from bodies frozen at –20 degrees C for 16 years. Proc. Natl. Scad. Sci. USA, 105: 17318–17322.]Search in Google Scholar
[Wang H., Cui W., Meng C., Zhang J., Li Y., Qian Y., Xing G., Zhao D., Cao S. (2018). MC1568 enhances histone acetylation during oocyte meiosis and improves development of somatic cell nuclear transfer embryos in pig. Cell Reprogram, 20: 55–65.]Search in Google Scholar
[Wang X., Qu J., Li J., He H., Liu Z., Huan Y. (2020). Epigenetic reprogramming during somatic cell nuclear transfer: recent progress and future directions. Front. Genet., 11: 205.]Search in Google Scholar
[Wani N.A., Wernery U., Hassan F.A.H., Wernery R., Skidmore J.A. (2010). Production of the first cloned camel by somatic cell nuclear transfer. Biol. Reprod., 82: 373–379.]Search in Google Scholar
[Wilmut J., Schnieke A.E., Mc Whir J., Kind A.J., Campbell K.H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature, 385: 810–813.]Search in Google Scholar
[Wong T., Mc Grath J.A., Navsaria H. (2007). The role of fibroblasts in tissue engineering and regeneration. Br. J. Dermatol., 156: 1149–1155.]Search in Google Scholar
[Woods G.L., White K.L., Vanderwall D.K., Li G.P., Aston K.I., Bunch T.D., Meerdo L.N., Pate B.J. (2003). A mule cloned from fetal cells by nuclear transfer. Science, 30: 106.]Search in Google Scholar
[Wu C.F., Zhang D.F., Zhang S., Sun L., Liu Y., Dai J.J. (2019). Optimizing treatment of DNA methyltransferase inhibitor RG108 on porcine fibroblasts for somatic cell nuclear transfer. Reprod. Domest. Anim., 54: 1604–1611.]Search in Google Scholar
[Xiao J., Li Q., Qu P., Zhang Z., Pan S., Wang Y., Zhang Y. (2016). Isolation of bovine skinderived precursor cells and their developmental potential after nuclear transfer. Cell. Reprogram., 18: 411–418.]Search in Google Scholar
[Xu L., Mesalam A., Lee K.L., Song S.H., Khan I., Chowdhury M.M.R., Lv W., Kong I.K. (2019). Improves the in vitro developmental competence and reprogramming efficiency of cloned bovine embryos by additional complimentary cytoplasm. Cell. Reprogram., 21: 51–60.]Search in Google Scholar
[Yamazaki Y., Low E., Marikawa Y., Iwahashi K., Bartolomei M., Mc Carrey J., Yanagimachi R. (2005). Adult mice cloned from migrating primordial germ cells. Microsc. Microanal., 11: 122–123.]Search in Google Scholar
[Yang X., Wu X., Yang Y., Gu T., Hong L., Zheng E., Xu Z., Zeng F., Shi J., Zhou R., Cai G., Wu Z., Li Z. (2019). Improvement of developmental competence of cloned male pig embryos by short hairpin ribonucleic acid (shRNA) vector-based but not small interfering RNA (siRNA)-mediated RNA interference (RNAi) of Xist expression. J. Reprod. Dev., 18: 533–539.]Search in Google Scholar
[Yuan Y., Krisher R.L. (2012). In vitro maturation (IVM) of porcine oocytes. In: Germline Development. Methods and Protocols, Chann W.Y., Blomberg L.A. (eds.). Springer, New York, NY. Methods Mol. Biol., 825: 183–198.]Search in Google Scholar
[Zagnoni M. (2012). Miniaturised technologies for the development of artificial lipid bilayer systems. Lab Chip., 12: 1026–1039.]Search in Google Scholar
[Zhang P., Zhang Y., Dou H., Yin J., Chen Y., Pang X., Vajta G., Bolund L., Du Y., Ma R.Z. (2012). Handmade cloned transgenic piglets expressing the nematode fat-1 gene. Cell. Reprogram., 14: 258–266.]Search in Google Scholar
[Zhang P., Liu P., Dou H., Chen L., Chen L., Lin L., Tan P., Vajta G., Gao J., Du Y., Ma R.Z. (2013). Handmade cloned transgenic sheep rich in omega-3 fatty acids. PLoS One, 8 (2): e55941.]Search in Google Scholar
[Zhou Q., Renard J.P., Fries G.L., Brochard V., Beaujean N., Cherifi Y., Fraichard A., Cozzi J. (2003). Generation of fertile cloned rats by regulating oocyte activation. Science, 302: 117.]Search in Google Scholar
[Zhou C., Wang Y., Zhang J., Su J., An Q., Liu X., Zhang M., Wang Y., Liu J., Zhang Y. (2019). H3K27me3 is an epigenetic barrier while KDM6A overexpression improves nuclear reprogramming efficiency. FASEB J., 33: 4638–4652.]Search in Google Scholar