1. bookVolume 22 (2022): Issue 1 (January 2022)
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Open Access

Emissions of Gaseous Pollutants from Pig Farms and Methods for their Reduction – A Review

Published Online: 04 Feb 2022
Volume & Issue: Volume 22 (2022) - Issue 1 (January 2022)
Page range: 89 - 107
Received: 07 Sep 2020
Accepted: 19 Feb 2021
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English

Alagawany M., Abd El-Hack M.E., El-Kholy M.S. (2016). Productive performance, egg quality, blood constituents, immune functions, and antioxidant parameters in laying hens fed diets with different levels of Yucca schidigera extract. Environ. Sci. Pollut. Res., 23: 6774–6782.Search in Google Scholar

Bartoš P., Dolan A., Smutný L., Šístková M., Celjak I., Šoch M., Havelka Z. (2016). Effects of phytogenic feed additives on growth performance and on ammonia and greenhouse gases emissions in growing-finishing pigs. Anim. Feed Sci. Technol., 213: 143–148.Search in Google Scholar

Berg W., Brunsch R., Pazsiczki I. (2006). Greenhouse gas emissions from covered slurry compared with uncovered during storage. Agr. Ecos. Environ., 112: 129–134.Search in Google Scholar

Bildsoe P., Adamsen A.P.S., Feilberg A. (2012). Effect of low-dose liquid ozonation on gaseous emissions from pig slurry. Biosys. Eng., 113: 8693.Search in Google Scholar

Blanes-Vidal V., Hansen M.N., Pedersen S., Rom H.B. (2008). Emissions of ammonia, methane and nitrous oxide from pig houses and slurry: Effects of rooting material, animal activity and ventilation flow. Agric. Ecosyst. Environ., 124: 237–244.Search in Google Scholar

Calvet S., Hunt J., Misselbrook T.H. (2017). Low frequency aeration of pig slurry affects slurry characteristics and emissions of greenhouse gases and ammonia. Biosyst. Eng., 159: 121–132.Search in Google Scholar

Chen J., Kang B., Jiang Q., Han M., Zhao Y., Long L., Fu C., Yao K. (2018). Alphaketoglutarate in low-protein diets for growing pigs: effects on cecal microbial communities and parameters of microbial metabolism. Front. Microbiol., 9: 114.Search in Google Scholar

Chepete H.J., Xin H., Mendes L.B., Li H., Bailey T.B. (2012). Ammonia emission and performance of laying hens as affected by different dosages of Yucca schidigera in the diet. J. App. Poultry Res., 21: 522–530.Search in Google Scholar

Chmielowiec-Korzeniowska A. (2009). The concentration of volatile organic compounds (VOCs) in pig farm air. Annal. Agric. Environ. Med., 16: 249–256.Search in Google Scholar

Chmielowiec-Korzeniowska A., Tymczyna L., Pyrz M., Trawińska B., Abramczyk K., Dobrowolska M. (2018). Occupational exposure level of pig facility workers to chemical and biological pollutants. Ann. Agric. Environ. Med., 25: 262–267.Search in Google Scholar

Cho S., Hwang O., Park S. (2015). Effect of dietary protein levels on composition of odorous compounds and bacterial ecology in pig manure. Asian Austral. J. Anim. Sci., 28: 1362–1370.Search in Google Scholar

Colina J., Lewis A., Miller P.S. (2000). A review of the ammonia issue and pork production. Nebraska Swine Rep., 108: 2425.Search in Google Scholar

Commission Implementing Decision (EU) 2017/302 of 15 February 2017 establishing best available techniques (BAT) conclusions, under Directive 2010/75/EU of the European Parliament and of the Council, for the intensive rearing of poultry or pigs.Search in Google Scholar

Dämmgen U., Schulz J., Klausing H.K., Hutchings N.J., Haenel H.D., Rösemann C. (2012). Enteric methane emissions from German pigs. Landbauforschung Volkenrode, 62: 83–96.Search in Google Scholar

Domagalski Z., Marek P., Sobczak J. (2012). The use of a phytotron chamber in reducing emissions of odor compounds from poultry houses. Probl. Agric. Eng., 2: 127–131.Search in Google Scholar

Eriksen J., Adamsen A.P.S., Norgaard J.V., Poulsen H.D., Jensen B.B., Petersen S.O. (2010). Emissions of sulphur-containing odorants, ammonia, and methane from pig slurry: Effects of dietary methionine and benzoic acid. J. Environ. Qual., 39: 1097–1107.Search in Google Scholar

Eriksen J., Nørgaard J.V., Poulsen H.V., Jansen B.B., Petersen S.O. (2014). Effects of acidifying pig diets on emissions of ammonia, methane, and sulfur from slurry during storage. J. Environ. Qual., 43: 2086–2095.Search in Google Scholar

Ershadi S.Z., Dias G., Heidari M.D., Pelletier N. (2020). Improving nitrogen use efficiency in crop-livestock systems: A review of mitigation technologies and management strategies, and their potential applicability for egg supply chains. J. Clean. Prod., 265: 121671–121675.Search in Google Scholar

Eurostat 2016. Share of agriculture to total ammonia emissions. Available online: http://ec.europa.eu/eurostat/statisticsexplained/index.php/File:Share_of_agriculture_to_total_ammonia_emissions,_(%25),_2010,_EU-27.png.Search in Google Scholar

Eurostat 2019. Greenhouse gas emissions by source sector (source: EEA). Available online: https://ec.europa.eu/eurostat/databrowser/view/env_air_gge/Search in Google Scholar

Feilberg A., Sommer S.G. (2013). Ammonia and malodorous gases: Sources and abatement technologies. In: Animal manure recycling: Treatment and management, S.G. Sommer, M.L. Christensen, T. Schmidt, L.S. Jensen, (eds). John Wiley & Sons, Chichester, UK., 153 pp.Search in Google Scholar

Galassi G.S., Colombini L., Malagutti G., Crovetto A., Rapetti L. (2010). Effects of high fibre and low protein diets on performance, digestibility, nitrogen excretion and ammonia emission in the heavy pig. Anim. Feed Sci. Technol., 161: 140–148.Search in Google Scholar

Gerber P.J., Steinfeld H., Henderson B., Mottet A., Opio C., Dijkman J., Falcucci A., Tempio G. (2013). Tackling climate change through livestock – A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome.Search in Google Scholar

Grela E.R., Kowalczyk-Pecka D., Hanczakowska E., Matras J. (2016). Effect of inulin and a probiotic supplement in the diet of pigs on selected traits of the gastrointestinal microbiome. Med. Weter., 72: 448–452.Search in Google Scholar

Guarino M., Fabbri C., Navarotto P., Valli L., Mascatelli G., Rossetti M., Mazzotta V. (2003). Ammonia, methane and nitrous oxide emissions and particulate matter concentrations in two different buildings for fattening pig. In: Proceedings of the International Symposium on Gaseous and Odour Emissions from Animal Production Facilities, Commission Internationale de Génie Rural (ed.). Danish Institute for Agricultural Sciences Foulum, Denmark, pp. 140–149.Search in Google Scholar

Guingand N., Quiniou N., Courboulay V. (2010). Comparison of ammonia and greenhouse gas emissions from fattening pigs kept either on partially slatted floor in cold conditions or on fully slatted floor in thermoneutral conditions. J. Rech. Porcine, 42: 277–284.Search in Google Scholar

Gungor K., Alkan-Ozkaynak A., Karthikeyan K.G., Evrendilek F., Gunasekaran S. (2016). Modeling of solubilization dynamics of manure organic matter and phosphorus as a function of pH control and enzyme supplementation. Environ. Protect. Eng., 42: 155–170.Search in Google Scholar

Hansen M.J., Jonassen K.E.N., Lokke M.M., Adamsen A.P.S., Feiberg A. (2016). Multivariate prediction of odor from pig production based on in-situ measurement of odorants. Atmos. Environ., 135: 50–58.Search in Google Scholar

Hansen M.J., Kamp J.N., Adamsen A.P.S., Feilberg A. (2020). Low-emission slurry pits for pig houses with straw application. Biosyst. Eng., 197: 56–63.Search in Google Scholar

Hayes E.T., Curran T.P., Dodd V.A. (2006). Odour and ammonia emissions from intensive pig units in Ireland. Bioresour. Technol., 97: 940–948.Search in Google Scholar

Herrero M., Thornton P.K. (2013). Livestock and global change: emerging issues for sustainable food systems. Proc. Natl. Acad. Sci. USA., 110: 20878–20881.Search in Google Scholar

Institute of Public Health and Environmental, 2004.Search in Google Scholar

IPCC. Guidelines for National Greenhouse Gas Inventories (2006). Available online: www.ipcc-nggip.iges.or.jp/public/2006gl/vol1.htmlSearch in Google Scholar

IPPC Directive – Integrated Pollution Prevention and Control – consolidated text, Official Journal of the EU L 24 of 29.01.2008.Search in Google Scholar

IPPC Directive (2008) – consolidated text, Official Journal of the EU L 24 of 29.01.2008.Search in Google Scholar

Janus M., Więcek J., Pietkiewicz S. (2016). Pig housing system versus greenhouse gas emissions. Anim. Sci., 55: 31–37.Search in Google Scholar

Jiang T., Schuchardt F., Li G.X., Guo R., Zhao Y.Q. (2011). Effect of C/N ratio, aeration rate and moisture content on ammonia and greenhouse gas emission during the composting. J. Environ. Sci., 23: 1754–1760.Search in Google Scholar

Journal of Laws 2010 no. 213 item 1397. Regulation of the Council of Ministers of November 9, 2010 on projects that may have a significant impact on the environment.Search in Google Scholar

Journal of Laws of 2007 no. 147 item 1033. Act on fertilizers and fertilization.Search in Google Scholar

Kai P., Pedersen P., Jensen J.E., Hansen M.N., Sommer S.G. (2008). A whole-farm assessment of the efficacy of slurry acidification in reducing ammonia emission. Eur. J. Agron., 28: 148–154.Search in Google Scholar

Kavolelis B. (2006). Impact of animal housing systems on ammonia emission rates. Polish J. Environ. Stud., 15: 739–745.Search in Google Scholar

Koger J.B., O’Brien B.K., Burnette R.P., Kai P., van Kempen M.H.J.G., van Heug-ten E., van Kempen T.A.T.G. (2014). Manure belts for harvesting urine and feces separately and improving air quality in swine facilities. Livest. Sci., 162: 214–222.Search in Google Scholar

Korczyński M., Opaliński S., Kołacz R., Dobrzański Z., Gbiorczyk W., Szołtysik M. (2010). Chemical and biotechnological preparations for litter, manure and slurry limiting the emission of odors and toxic gases “at source”. Contemporary odor issues. Scientific and Technical Publishing House, Warsaw.Search in Google Scholar

Landrain B., Ramonet Y., Quillien J.P., Robin P. (2009). Impact of the installation of a V-shaped scraper under slats in a fattening piggery on performances et on ammonia and nitrous oxide emissions. J. Rech. Porc., 41: 259–264.Search in Google Scholar

Lindberg J.E. (2014). Fiber effects in nutrition and gut health in pigs. J. Anim. Sci. Biotechnol., 5: 5–15.Search in Google Scholar

Liu D., Feilberga A., Adamsena A.P.S., Jonassen K.E.N. (2011). The effect of slurry treatment including ozonation on odorant reduction measured by in-situ PTR-MS. Atmos. Environ., 45: 3786–3793.Search in Google Scholar

Maeda K., Hanajima D., Toyoda S., Yoshida N., Morioka R., Osada T. (2011). Microbiology of nitrogen cycle in animal manure compost. Microb. Biotechnol., 4: 700–709.Search in Google Scholar

Marszałek M., Kowalski Z., Makara A. (2018). Emission of greenhouse gases and odorants from pig slurry – effect on the environment and methods of its reduction. Ecol. Chem. Eng. S., 25: 383–394.Search in Google Scholar

Matusiak K., Gutarowska B., Borowski S. (2013). Characteristics of microorganisms capable of removing odor volatile compounds from chicken droppings. Woda Środ. Obsz. Wiej., 13: 89–101.Search in Google Scholar

Mielcarek-Bocheńska P., Rzeźnik W. (2015). Odor emission factors from livestock production. Polish J. Environ. Stud., 24: 27–35.Search in Google Scholar

Misselbrook T., Hunt J., Perazzolo F., Provolo G. (2016). Greenhouse gas and ammonia emissions from slurry storage: impacts of temperature and potential mitigation through covering (pig slurry) or acidification (cattle slurry). J Environ. Qual., 45: 1520–1530.Search in Google Scholar

Moehn S., Bertolo R., Pencharz P., Ball R. (2004). Pattern of carbon dioxide production and retention is similar in adult pigs when fed hourly, but not when fed a single meal. BMC Physiol., 4: 4–11.Search in Google Scholar

Mohajan H.K. (2012). Dangerous effects of methane gas in atmosphere. Internat. J. Econom. Political Integrat., 2: 3–10.Search in Google Scholar

Monteiro D.O., Pinheiro V.M.C., Medeiros M.J.L., Machado R.M.A. (2010). Strategies for mitigation of nitrogen environmental impact from swine production. Rev. Bras. Zootecn., 39 (Suppl.): 317–325.Search in Google Scholar

Mostafa E., Selders A., Gates R.S. (2020). Pig barns ammonia and greenhouse gas emission mitigation by slurry aeration and acid scrubber. Environ. Sci. Pollut. Res., 27: 9444–9453.Search in Google Scholar

Mroczek J.R. (2009). The use of Yucca schidigera extract in fattening pigs. Pol. Tow. Inż. Ekol., 11: 171.Search in Google Scholar

Naseem S., King A.J. (2018). Ammonia production in poultry houses can affect health of humans, birds, and the environment-techniques for its reduction during poultry production. Environ. Sci. Pollut. Res., 25: 15269–15293.Search in Google Scholar

Nowakowicz-Dębek B., Wlazło Ł., Stasińska B., Kułażyński M., Ossowski M., Krzaczek P., Bis-Wencel H. (2017). Emission of methane from intensive pig breeding. Przem. Chem., 96: 2353–2357.Search in Google Scholar

Oleksy M., Dobrzański Z., Matusiak Z., Borowski K., Korczyński M., Gutarowska B. (2015). Physicochemical and biological methods of deodorization. Theoretical and practical aspects. Przem. Chem., 1: 213–217.Search in Google Scholar

Opaliński S., Korczyński M., Szołtysik M., Kołacz R., Dobrzański Z., Gbiorczyk W. (2010). Application of mineral sorbents to filtration of air contaminated by odorous compounds. Chem. Enging. Transact., 23: 369–374.Search in Google Scholar

Orzi V., Riva C., Scaglia B., D’Imporzano G., Tambone F., Adani F. (2018). Anaerobic digestion coupled with digestate injection reduced odour emissions from soil during manure distribution. Sci. Total Environ., 621: 168–176.Search in Google Scholar

Osada T., Rom H.B., Dahl P. (1998). Continuous measurement of nitrous oxide and methane emission in pig units by infrared photoacoustic detection. Trans. ASAE., 41: 1109–1114.Search in Google Scholar

Papatsiros V.G., Billinis C. (2012). The prophylactic use of acidifiers as antibacterial agents in swine. In: Antimicrobial agents, V. Bobbarala (ed.). InTech, Rijeka, Croatia 295.Search in Google Scholar

Petersen S., Andersen A., Jørgen E. (2012). Effects of cattle slurry acidification on ammonia and methane evolution during storage. J. Environ. Qual., 41: 88–94.Search in Google Scholar

Pezzuolo A., Sartori C., Vigato E., Guercini S. (2019). Effect of litter treatment with probiotic bacteria on ammonia reduction in commercial broiler farm. Eng. Rural Dev., 22–24: 1631–1635.Search in Google Scholar

Philippe F.X., Nicks B. (2014). Review on greenhouse gas emissions from pig houses: Production of carbon dioxide, methane and nitrous oxide by animals and manure. Agric. Ecosyst. Environ., 199: e10-e25.Search in Google Scholar

Philippe F., Nicks B. (2015). Review on greenhouse gas emissions from pig houses: Production of carbon dioxide, methane and nitrous oxide by animals and manure. Agric. Ecosys. Environ., 199: 10–25.Search in Google Scholar

Philippe F., Cabaraux J., Nicks B. (2011). Ammonia emissions from pig houses: Influencing factors and mitigation techniques. Agric. Ecos. Environ., 141: 245–260.Search in Google Scholar

Pierce K.M., Callan J.J., Mccarthy P., O’Doherty J.V. (2005). Performance of weanling pigs offered low or high lactose diets supplemented with avilamycin or inulin. Anim. Sci., 80: 313–318.Search in Google Scholar

Recharla N., Kim K., Park J., Jeong I., Jeong Y., Lee H., Hwang O., Ryu J., Baek Y., Oh Y., Park S. (2017). Effects of amino acid composition in pig diet on odorous compounds and microbial characteristics of swine excreta. J. Anim. Sci. Technol., 59: 28–36.Search in Google Scholar

Roberfroid M., Gibson G.R., Hoyles L., Mccartney A.L., Rastall R., Rowland I., Wolvers D., Watzl B., Szajewska H., Stahl B., Guarner F., Respondek F., Whelan K., Coxam V., Davicco M.J., Léotoing L., Wittrant Y., Delzenne N.M., Cani P.D., Neyrinck A.M., Meheust A. (2016). Prebiotic effects: metabolic and health benefits. Br. J. Nutr., 104: 1–63.Search in Google Scholar

Rodriguez M.R., Losada E., Besteiro R., Arango T., Velo R., Ortega J.A., Fernandez M.D. (2020). Evolution of NH3 concentrations in weaner pig buildings based on setpoint temperature. Agronomy, 10: 107–114.Search in Google Scholar

Rütting T., Aronsson H., Delin S. (2018). Efficient use of nitrogen in agriculture. Nutr. Cycl. Agroecosyst., 110: 1–5.Search in Google Scholar

Saeed M., Arain M.A., Naveed M., Alagawany M., El-Hack M.E.A., Bhutto Z.A., Chao S. (2018). Yucca schidigera can mitigate ammonia emissions from manure and promote poultry health and production. Environ. Sci. Pollut. Res., 25: 1–7.Search in Google Scholar

Sajeev E.P.M., Winiwarter W., Amon B. (2017). Greenhouse gas and ammonia emissions from different stages of liquid manure management chains: Abatement options and emission interactions. J. Environ. Qual., 30: 30–40.Search in Google Scholar

Sapek A. (2013). Non-agricultural sources of ammonia emissions to the atmosphere. Woda Środ. Obsz. Wiej., 13: 95–110.Search in Google Scholar

Sommer S.G., Zhang G.Q., Bannink A., Chadwic D., Misselbrook T., Harrison R., Hutchings N.J., Menzi H., Monteny G.J., Ni J.Q., Oenema O., Webb J. (2006). Algorithms determining ammonia emission from buildings housing cattle and pigs and from manure stores. Adv. Agron., 89: 261–335.Search in Google Scholar

Sun G., Guo H.Q., Peterson J., Predicala B., Lague C. (2008). Diurnal odor, ammonia, hydrogen sulfide, and carbon dioxide emission profiles of confined swine grower/finisher rooms. J. Air Waste Manage. Assoc., 58: 1434–1448.Search in Google Scholar

Swamy Y.V., Venkanna R., Nikhil G.N., Chitanya D.N.S.K., Sinha P.R., Ramakrishna M., Rao A.G. (2012). Impact of nitrogen oxides, volatile organic compounds and black carbon on atmospheric ozone levels at a semiarid urban site in Hyderabad. Aerosol Air Qual. Res., 12: 662–671.Search in Google Scholar

Syp A. (2017). Greenhouse gas emissions from agriculture between 1990 and 2014. Problems of World Agriculture, 17: 244–255.Search in Google Scholar

Tako E., Glahn R.P., Welch R.M., Lei X., Yasuda K., Miller D.D. (2008). Dietary inulin affects the expression of intestinal enterocyte iron transporters, receptors and storage protein and alters the microbiota in the pig intestine. Brit. J. Nutr., 99: 478–480.Search in Google Scholar

Tymczyna L., Chmielowiec-Korzeniowska A., Drabik A. (2009). Effect of pig confinement housing system on emission of gaseous air pollutants. Przem. Chem., 88: 574–578.Search in Google Scholar

Tymczyna L., Chmielowiec-Korzeniowska A., Drabik A., Raczyńska J. (2010). Biofiltration of volatile organic compounds (VOC) in the exhaust air of a fattening house. Przem. Chem., 89: 567–573.Search in Google Scholar

Valenzuela-Grijalva N.V., Pinelli-Saavedra A., Muhlia-Almazan A., Domínguez-Díaz D., González-Ríos H. (2017). Dietary inclusion effects of phytochemicals as growth promoters in animal production. J. Anim. Sci. Technol., 59: 1–17.Search in Google Scholar

Van De Wiele T., Boon N., Possemiers S., Jacobs H., Verstraete W. (2007). Inulintype fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effects. J. Appl. Microbiol., 102: 452–460.Search in Google Scholar

Van Der Heyden C., Demeyer P., Volcke E.I. (2015). Mitigating emissions from pig and poultry housing facilities through air scrubbers and biofilters: State-of-the-art and perspectives. Biosys. Eng., 134: 74–93.Search in Google Scholar

Walczak J. (2017). The importance of zootechnical sciences in environmental protection and combating climate change. National results of research and assessment activities in the field of environmental protection and climate change in the agriculture sector. National Research Institute of Animal Production, Kraków.Search in Google Scholar

Wang K., Wei B., Zhu S., Ye Z. (2011). Ammonia and odour emitted from deep litter and fully slatted floor systems for growing-finishing pigs. Biosys. Enging., 109: 203–210.Search in Google Scholar

Wang K., Huang D., Ying H., Luo H. (2014). Effects of acidification during storage on emissions of methane, ammonia, and hydrogen sulfide from digested pig slurry. Biosyst. Eng., 122: 23–30.Search in Google Scholar

Wang Y., Li X., Yang J., Tian Z., Sun Q., Xue W., Dong H. (2018). Mitigating greenhouse gas and ammonia emissions from beef cattle feedlot production: A system meta-analysis. Environ. Sci. Technol., 52: 11232–11242.Search in Google Scholar

Webb J., Pain B., Bittman S., Morgan J. (2010). The impacts of manure application methods on emissions of ammonia, nitrous oxide and on crop response – a review. Agric. Ecos. Environ., 137: 39–46.Search in Google Scholar

Webb J., Broomfielda M., Jones B.S., Donovan B. (2014). Ammonia and odour emissions from UK pig farms and nitrogen leaching from outdoor pig production. A review. Sci. Total Environ., 470: 865–875.Search in Google Scholar

Zhang Z.F., Kim I.H. (2014). Effects of multistrain probiotics on growth performance, apparent ileal nutrient digestibility, blood characteristics, cecal microbial shedding, and excreta odor contents in broilers. Poultry Sci., 93: 364–370.Search in Google Scholar

Ziemann P.J., Atkinson R. (2012). Kinetics, products, and mechanisms of secondary organic aerosol formation. Chem. Soc. Rev., 41: 6582–6605.Search in Google Scholar

Zong C., Li H., Zhang G. (2015). Ammonia and greenhouse gas emissions from fattening pig house with two types of partial pit ventilation systems. Agric. Ecosyst. Enviro., 208: 94–105.Search in Google Scholar

Recommended articles from Trend MD