1. bookVolume 21 (2021): Issue 3 (July 2021)
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Open Access

The Evaluation of Arthrospira platensis Bioactivity and their Dietary Supplementation to Nile Tilapia Vegetarian Diet on Growth Performance, Feed Utilization, Body Composition and Hemato-Biochemical Parameters

Published Online: 05 Aug 2021
Volume & Issue: Volume 21 (2021) - Issue 3 (July 2021)
Page range: 1061 - 1080
Received: 08 Oct 2020
Accepted: 18 Jan 2021
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Abstract

The present study aimed to identify the carotenoid content and evaluate the antioxidant activities of spirulina, Arthrospira platensis (in vitro), and the effect of its supplementation to a vegetarian diet on growth performance, feed utilization, body proximate composition and physiological status of Nile tilapia, Oreochromis niloticus (in vivo). The carotenoid content of spirulina was identified by UPLC-MS/MS and showed that trans and cis β-carotene were the major carotenoids (88.3%) followed by β-cryptoxanthin and zeaxanthin. The antioxidant activity of spirulina was determined in water and crude carotenoid extracts by 2,2-diphenyl-1-picryhydrazyl (DPPH) scavenging assay, both extracts showed a significant free radical scavenging capacity. In addition, Nile tilapia fry (0.83 ± 0.01 g) was fed a vegetarian diet supplemented with different levels of spirulina for 12 weeks. The results revealed that the highest growth performance and nutrient utilization were recorded with 0.5% spirulina and the peak response determined at 0.63%-0.65% using polynomial second order regression. Also, the hemoglobin content improved in a quadratic regression model with the peak at 0.67% spirulina. Plasma total protein and lipid contents increased significantly with spirulina levels over 0.50%. Moreover, the aminopeptidase activities and glucose level decreased significantly with increasing spirulina levels. The current study recommended the supplementation of the Nile tilapia vegetarian diet with spirulina at levels of 0.63-0.65% for better growth performance and physiological status.

Keywords

Abdel-Daim M.M., Dawood M.A., Elbadawy M., Aleya L., Alkahtani S.(2020). Spirulina platensis reduced oxidative damage induced by chlorpyrifos toxicity in Nile tilapia (Oreochromis niloticus). Animals, 10: 473. Search in Google Scholar

Abdel-Tawwab M., Ahmad M.H.(2009). Live Spirulina (Arthrospira platensis) as a growth and immunity promoter for Nile tilapia, Oreochromis niloticus (L.), challenged with pathogenic Aeromonas hydrophila. Aquacult. Res., 40: 1037–1046. Search in Google Scholar

Allam B.W., Khalil H.S., Mansour A.T., Srour T.M., Omar E.A., Nour A.A.M.(2020). Impact of substitution of fish meal by high protein distillers dried grains on growth performance, plasma protein and economic benefit of striped catfish (Pangasianodon hypophthalmus). Aquaculture, 517: 734–792. Search in Google Scholar

Amer S.A.(2016). Effect of Spirulina platensis as feed supplement on growth performance, immune response and antioxidant status of mono-sex Nile Tilapia (Oreochromis niloticus). Benha Vet. Med. J., 30: 1–10. Search in Google Scholar

AOAC(2000). International Official Methods of Analysis, 17th edition. Association of Official Analytical Chemists (AOAC). Arlington, Virginia, USA. Search in Google Scholar

Becker E.(2007). Micro-algae as a source of protein. Biotechnol. Adv., 25: 207–210. Search in Google Scholar

Bergman M., Felig P.(1984). Self-monitoring of blood glucose levels in diabetes: principles and practice. Arch. Intern. Med., 144: 2029–2034. Search in Google Scholar

Cao S.P., Zou T., Zhang P.Y., Han D., Jin J.Y., Liu H.K., Yang Y.X., Zhu X.M., Xie S.Q.(2018). Effects of dietary fishmeal replacement with Spirulina platensis on the growth, feed utilization, digestion and physiological parameters in juvenile gibel carp (Carassis auratus gibelio var. CAS III). Aquacult. Res., 49: 1320–1328. Search in Google Scholar

Castell J.D., Tiewes K.(1980). Report of the EIFAC, IUNS and ICES working group on the standardization of methodology in fish research. Hamburg, FRG, 21–23.03.1979. IFAC Tech. Pap. (3) 24. Search in Google Scholar

Cerqueira M., Schrama D., Silva T.S., Colen R., Engrola S.A., Conceição L.E., Rodrigues P.M., Farinha A.P. (2020). How tryptophan levels in plant-based aquafeeds affect fish physiology, metabolism and proteome. J. Proteomics, 221: 103782. Search in Google Scholar

Cipolatti E.P., Remedi R.D., dos Santos SáC., Rodrigues A.B., Ramos J.M.G., Burkert C.A.V., Furlong E.B., de Medeiros Burkert J.F. (2019). Use of agroindustrial byproducts as substrate for production of carotenoids with antioxidant potential by wild yeasts. Biocatal. Agric. Biotechnol., 20: 101208. Search in Google Scholar

Dawood M.A., Abo-Al-Ela H.G., Hasan M.T.(2019). Modulation of transcriptomic profile in aquatic animals: Probiotics, prebiotics and synbiotics scenarios. Fish Shellfish Immunol., 97: 268–282. Search in Google Scholar

de Cruz C.R., Lubrano A., Gatlin IIID.M.(2018). Evaluation of microalgae concentrates as partial fishmeal replacements for hybrid striped bass Morone sp. Aquaculture, 493: 130–136. Search in Google Scholar

de Mattos B.O., López-Olmeda J.F., Guerra-Santos B., Ruiz C.E., García-Bel-trán J.M., Ángeles-Esteban M., Sánchez-Vázquez F.J., Fortes-Silva R. (2019). Coping with exposure to hypoxia: modifications in stress parameters in gilthead seabream (Sparus aurata) fed spirulina (Arthrospira platensis) and brewer’s yeast (Saccharomyces cerevisiae). Fish Physiol. Biochem., 45: 1801–1812. Search in Google Scholar

Dernekbasi S., Unal H., Karayucel I., Aral O.(2010). Effect of dietary supplementation of different rates of Spirulina (Spirulina platensis) on growth and feed conversion in Guppy (Poecilia reticulata Peters, 1860). J. Anim. Vet. Adv., 9: 1395–1399. Search in Google Scholar

Duncan D.(1955). Multiple range and multiple F test. Biometric, 11: 1–42. Search in Google Scholar

El Hakim Y.A., Neamat-Allah A.N., Baeshen M., Ali H.A.(2019). Immune-protective, antioxidant and relative genes expression impacts of β-glucan against fipronil toxicity in Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol., 94: 427–433. Search in Google Scholar

El-Sayed A.-F.M.(2006). Tilapia Culture. CABI Publishing, Wallingford, Oxfordshire, UK.10.1079/9780851990149.0000 Search in Google Scholar

El-Sayed A.E.-K., Mostafa E.-S.(2018). Outdoor cultivation of Spirulina platensis for mass production. Not. Sci. Biol., 10: 38–44. Search in Google Scholar

Estrada J.P., Bescós P.B., Del Fresno A.V.(2001). Antioxidant activity of different fractions of Spirulina platensis protean extract. Il Farmaco, 56: 497–500. Search in Google Scholar

FAO(2020). The State of World Fisheries and Aquaculture 2020. Sustainability in action. Rome, Italy. Search in Google Scholar

Francis G., Makkar H., Becker K.(2001). Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture, 199: 197–227. Search in Google Scholar

Fumanal M., Di Zeo D.E., Anguís V., Fernández-Diaz C., Alarcón F.J., Piñera R., Albaladejo-Riad N., Esteban M.A., Moriñigo M.A., Balebona M.C. (2020). Inclusion of dietary Ulva ohnoi 5% modulates Solea senegalensis immune response during Photobacterium damselae subsp. piscicida infection. Fish Shellfish Immunol., 100: 186–197. Search in Google Scholar

Gatlin IIID.M., Barrows F.T., Brown P., Dabrowski K., Gaylord T.G., Hardy R.W., Herman E., Hu G., KrogdahlÅ., Nelson R., Overturf K. (2007). Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquac Res, 38: 551–579. Search in Google Scholar

Geffroy B., Simon O.(2013). Effects of a Spirulina platensis-based diet on zebrafish female reproductive performance and larval survival rate. Cybium, 37: 31–38. Search in Google Scholar

Gella F.J., Olivella T., Pastor M.C., Arenas J., Moreno R., Durban R., Gomez J.A.(1985). A simple procedure for the routine determination of aspartate aminotransferase and alanine aminotransferase with pyridoxal phosphate. Clin. Chim. Acta, 153: 241–247. Search in Google Scholar

Ghiasi M., Binaii M., Ghasemi M., Fazli H., Zorriehzahra M.J.(2016). Haemato-biochemical disorders associated with nodavirus like-agent in adult leaping mullet, Liza saliens (Risso, 1810) in the Caspian Sea. Virus Disease, 27: 12–18. Search in Google Scholar

Goda A.A.S., Srour T.M., Omar E., Mansour A.T., Baromh M.Z., Mohamed S.A., El-Haroun E., Davies S.J. (2019). Appraisal of a high protein distiller’s dried grain (DDG) in diets for European sea bass, Dicentrarchus labrax fingerlings on growth performance, haematological status and related gut histology. Aquacult. Nutr., 25: 808–816. Search in Google Scholar

Gorissen S.H., Crombag J.J., Senden J.M., Waterval W.H., Bierau J., Verdijk L.B., van Loon L.J. (2018). Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids, 50: 1685–1695. Search in Google Scholar

Gornal A.C., Bardawill C.J., David M.M.(1949). Determination of serum proteins by means of the biuret reaction. J. Biol. Chem., 177: 751–766. Search in Google Scholar

Gu M., Kortner T.M., Penn M., Hansen A.K., KrogdahlÅ.(2014). Effects of dietary plant meal and soya-saponin supplementation on intestinal and hepatic lipid droplet accumulation and lipoprotein and sterol metabolism in Atlantic salmon (Salmo salar L.). Br. J. Nutr., 111: 432–444. Search in Google Scholar

Habib M., Parvin M., Huntington T., Hasan M.(2008). A review on culture, production and use of Spirulina as food for humans and feeds for domestic animals and fish. Food and Agriculture Organization of the United Nations, Rome, Italy. Search in Google Scholar

Harel M., Koven W., Lein I., Bar Y., Behrens P., Stubblefield J., Zohar Y., Pla-ce A.R. (2002). Advanced DHA, EPA and ArA enrichment materials for marine aquaculture using single cell heterotrophs. Aquaculture, 213: 347–362. Search in Google Scholar

Hatano T., Kagawa H., Yasuhara T., Okuda T.(1988). Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects. Chemical and pharmaceutical bulletin, 36: 2090–2097. Search in Google Scholar

Holman B., Malau-Aduli A.(2013). Spirulina as a livestock supplement and animal feed. J. Anim. Physiol. Anim. Nutr., 97: 615–623. Search in Google Scholar

Hultberg M., Lind O., Birgersson G., Asp H.(2017). Use of the effluent from biogas production for cultivation of Spirulina. Bioprocess Biosystems Eng., 40: 625–631. Search in Google Scholar

IFFO(2017). Fishmeal and fish oil: a summary of global trends, 57th IFFO Annual Conference, Washington, USA. Search in Google Scholar

James R., Sampath K., Thangarathinam R., Vasudevan I.(2006). Effect of dietary spirulina level on growth, fertility, coloration and leucocyte count in red swordtail, Xiphophorus helleri. Isr. J. Aquac., 58: 97–104. Search in Google Scholar

Jang W.J., Lee J.M., Hasan M.T., Lee B.-J., Lim S.G., Kong I.-S.(2019). Effects of probiotic supplementation of a plant-based protein diet on intestinal microbial diversity, digestive enzyme activity, intestinal structure, and immunity in olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol., 92: 719–727. Search in Google Scholar

Khalila H., Fayed W., Mansour A., Srour T., Omar E., Darwish S., Nour A.(2018). Dietary supplementation of Spirulina, Arthrospira platensis, with plant protein sources and their effects on growth, feed utilization and histological changes in Nile Tilapia, Oreochromis niloticus. J. Aquac. Res. Develop., 9: 2. Search in Google Scholar

Liu F., Qu Y.-K., Wang A.-M., Yu Y.-B., Yang W.-P., Lv F., Nie Q.(2019). Effects of carotenoids on the growth performance, biochemical parameters, immune responses and disease resistance of yellow catfish (Pelteobagrus fulvidraco) under high-temperature stress. Aquaculture, 503: 293–303. Search in Google Scholar

Lu J., Takeuchi T., Ogawa H.(2003). Flesh quality of tilapia Oreochromis niloticus fed solely on raw Spirulina. Fish. Sci., 69: 529–534. Search in Google Scholar

Lu J., Yoshizaki G., Sakai K., Takeuchi T.(2002). Acceptability of raw Spirulina platensis by larval tilapia Oreochromis niloticus. Fish. Sci., 68: 51–58. Search in Google Scholar

Mandal R., Datta A., Sarangi N., Mukhopadhyay P.(2010). Diversity of aquatic macrophytes as food and feed components to herbivorous fish – a review. Indian J. Fish., 57: 65–73. Search in Google Scholar

Mansour A.T., Miao L., Espinosa C., García-Beltrán J.M., Francisco D.C.C., Es-teban M.Á. (2018). Effects of dietary inclusion of Moringa oleifera leaves on growth and some systemic and mucosal immune parameters of seabream. Fish Physiol. Biochem., 44: 1223–1240. Search in Google Scholar

Mansour A.T., Espinosa C., García-Beltrán J.M., Miao L., Francisco D.C.C., Al-saqufi A.S., Esteban M.Á. (2020). Dietary supplementation of drumstick tree, Moringa oleifera, improves mucosal immune response in skin and gills of seabream, Sparus aurata, and attenuates the effect of hydrogen peroxide exposure. Fish Physiol. Biochem., 46: 981–996. Search in Google Scholar

Maoka T.(2011). Carotenoids in marine animals. Mar. Drugs, 9: 278–293. Search in Google Scholar

Mendiola J.A., Marín F.R., Hernández S.F., Arredondo B.O., Señoráns F.J., Iba-ñez E., Reglero G. (2005). Characterization via liquid chromatography coupled to diode array detector and tandem mass spectrometry of supercritical fluid antioxidant extracts of Spirulina platensis microalga. J. Sep. Sci., 28: 1031–1038. Search in Google Scholar

National Research Council(2011). Nutrient requirements of fish and shrimp. The National Academies Press, Washington, DC, USA. Search in Google Scholar

Ng W.K., Romano N. (2013). A review of the nutrition and feeding management of farmed tilapia throughout the culture cycle. Rev. Aquacult., 5: 220–254. Search in Google Scholar

NRC(2011). Nutrient requirements of fish and shrimp. National Research Council, The National Academies Press, Washington. Search in Google Scholar

OPSF.a.(2017). Panorama de la Seguridad Alimentaria y Nutricional en America Latina y el Caribe Food and Agriculture Organization (FAO), Organización Panamericana de la Salud (OPS), Santiago de Chile. Search in Google Scholar

Pulz O., Gross W.(2004). Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol., 65: 635–648. Search in Google Scholar

Ragap H.M., Khalil R.H., Mutawie H.H.(2012). Immunostimulant effects of dietary Spirulina platensis on tilapia Oreochromis niloticus. J. Appl. Pharm. Sci., 2: 26. Search in Google Scholar

Ravindran B., Gupta S.K., Cho W.-M., Kim J.K., Lee S.R., Jeong K.-H., Lee D.J., Choi H.-C.(2016). Microalgae potential and multiple roles – current progress and future prospects – an overview. Sustainability, 8: 1215. Search in Google Scholar

Rehulka J.(2003). Haematological analyses in rainbow trout Oncorhynchus mykiss affected by viral haemorrhagic septicaemia (VHS). Dis. Aquat. Org., 56: 185–193. Search in Google Scholar

Rosas V.T., Poersch L.H., Romano L.A., Tesser M.B.(2019 a). Feasibility of the use of Spirulina in aquaculture diets. Rev. Aquacult., 11: 1367–1378.10.1111/raq.12297 Search in Google Scholar

Rosas V.T., Monserrat J.M., Bessonart M., Magnone L., Romano L.A., Tesser M.B.(2019 b). Comparison of β-carotene and Spirulina (Arthrospira platensis) in mullet (Mugil liza) diets and effects on antioxidant performance and fillet colouration. J. Appl. Phycol., 31: 2391–2399.10.1007/s10811-019-01773-1 Search in Google Scholar

Rumsey G.L., Siwicki A.K., Anderson D.P., Bowser P.R.(1994). Effect of soybean protein on serological response, non-specific defense mechanisms, growth, and protein utilization in rainbow trout. Vet. Immunol. Immunopathol., 41: 323–339. Search in Google Scholar

Sallam A.E., Mansour A.T., Srour T.M., Goda A.M.A.(2017). Effects of different carotenoid supplementation sources with or without sodium taurocholate on growth, feed utilization, carotenoid content and antioxidant status in fry of the European seabass, Dicentrarchus labrax. Aquacult. Res., 48: 3848–3858. Search in Google Scholar

Sayed A.E.-D.H., Fawzy M.A.(2014). Effect of dietary supplementation of Spirulina platensis on the growth and haematology of the Catfish Clarias gariepinus. J. Adv. Biol., 5: 625–636. Search in Google Scholar

Soni R.A., Sudhakar K., Rana R.(2017). Spirulina – From growth to nutritional product: A review. Trends Food Sci. Technol., 69: 157–171. Search in Google Scholar

Subagio A., Morita N., Sawada S.(1996). Carotenoids and their fatty-acid esters in banana peel. J. Nutr. Sci. Vitaminol., 42: 553–566. Search in Google Scholar

Tacchi L., Secombes C.J., Bickerdike R., Adler M.A., Venegas C., Takle H., Mar-tin S.A. (2012). Transcriptomic and physiological responses to fishmeal substitution with plant proteins in formulated feed in farmed Atlantic salmon (Salmo salar). BMC Genomics, 13: 363. Search in Google Scholar

Tacon A.G., Metian M.(2015). Feed matters: satisfying the feed demand of aquaculture. Rev. Fish. Sci. Aquac., 23: 1–10. Search in Google Scholar

Takeuchi T., Lu J., Yoshizaki G., Satoh S.(2002). Effect on the growth and body composition of juvenile tilapia Oreochromis niloticus. Fish. Sci., 68: 34–40. Search in Google Scholar

Talpur A.D., Ikhwanuddin M.(2012). Dietary effects of garlic (Allium sativum) on haematoimmunological parameters, survival, growth, and disease resistance against Vibrio harveyi infection in Asian sea bass, Lates calcarifer (Bloch). Aquaculture, 364: 6–12. Search in Google Scholar

Teimouri M., Yeganeh S., Amirkolaie A.(2016). The effects of Spirulina platensis meal on proximate composition, fatty acid profile and lipid peroxidation of rainbow trout (Oncorhynchus mykiss) muscle. Aquacult. Nutr., 22: 559–566. Search in Google Scholar

Trivedi J., Aila M., Bangwal D., Kaul S., Garg M.(2015). Algae based biorefinery – how to make sense? Renew. Sust. Energ. Rev., 47: 295–307. Search in Google Scholar

Ungsethaphand T., Peerapornpisal Y., Whangchai N., Sardsud U.(2010). Effect of feeding Spirulina platensis on growth and carcass composition of hybrid red tilapia (Oreochromis mossambicus × O. niloticus). Maejo Int. J. Sci., 4: 331–336. Search in Google Scholar

Van-Kampen E.J., Zijlstra W.G.(1961). Standardization of hemoglobinometry. Clin. Chim. Acta, 6: 438–544. Search in Google Scholar

Van Vo B., Siddik M.A., Fotedar R., Chaklader M.R., Hanif M.A., Foysal M.J., Nguyen H.Q. (2020). Progressive replacement of fishmeal by raw and enzyme-treated alga, Spirulina platensis influences growth, intestinal micromorphology and stress response in juvenile barramundi, Lates calcarifer. Aquaculture, 529: 735741. Search in Google Scholar

Vasta V., Daghio M., Cappucci A., Buccioni A., Serra A., Viti C., Mele M.(2019). Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: Experimental evidence and methodological approaches. J. Dairy Sci., 102: 3781–3804. Search in Google Scholar

Velasquez S.F., Chan M.A., Abisado R.G., Traifalgar R.F.M., Tayamen M.M., Mali-wat G.C.F., Ragaza J.A. (2016). Dietary Spirulina (Arthrospira platensis) replacement enhances performance of juvenile Nile tilapia (Oreochromis niloticus). J. Appl. Phycol., 28: 1023–1030. Search in Google Scholar

Wijffels R.H., Barbosa M.J., Eppink M.H.(2010). Microalgae for the production of bulk chemicals and biofuels. Biofuels, Bioproducts and Biorefining: Innovation for a sustainable economy, 4: 287–295. Search in Google Scholar

Wu H.-L., Wang G.-H., Xiang W.-Z., Li T., He H.(2016). Stability and antioxidant activity of food-grade phycocyanin isolated from Spirulina platensis. Int. J. Food Prop., 19: 2349–2362. Search in Google Scholar

Yeganeh S., Teimouri M., Amirkolaie A.K.(2015). Dietary effects of Spirulina platensis on hematological and serum biochemical parameters of rainbow trout (Oncorhynchus mykiss). Res. Vet. Sci., 101: 84–88. Search in Google Scholar

Yin C., Daoust K., Young A., Tebbs E., Harper D.(2017). Tackling community undernutrition at Lake Bogoria, Kenya: the potential of Spirulina (Arthrospira fusiformis) as a food supplement. African J. Food, Agric. Nutr. Dev., 17: 11603–11615. Search in Google Scholar

Zen C.K., Tiepo C.B.V., da Silva R.V., Reinehr C.O., Gutkoski L.C., Oro T., Col-la L.M.(2019). Development of functional pasta with microencapsulated Spirulina: technological and sensorial effects. J. Sci. Food Agric., 100: 2018–2026. Search in Google Scholar

Zollner N., Kirsch K.(1962). Colorimetric method for determination of total lipids. Z. Ges. Exp. Med., 135: 545–550. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo