1. bookVolume 14 (2014): Issue 2 (April 2014)
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

The Effect of Using DNA Obtained from Blood of Cattle with Genetic Chimerism on Illumina’s Beadchip Assay Performance

Published Online: 25 Apr 2014
Volume & Issue: Volume 14 (2014) - Issue 2 (April 2014)
Page range: 279 - 286
Received: 22 Oct 2013
Accepted: 20 Jan 2014
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Blood cell chimerism is a common phenomenon occurring in cattle coming from double or multiple parturitions and can be observed as two DNA profiles present in blood of each of twin born animals. In the era of genomics, a large number of animals is being genotyped with high throughput genotyping methods, which are giving limited insight into the performance of single markers and rather only statistical description of the results is available for a common user. This hampers the detailed analysis of the results obtained and direct identification of the causes of poorer performance of some samples. In this study we describe the influence of analysis of DNA obtained from blood samples of cattle with genetic chimerism on basic parameters of Infinium technology-based Illumina’s genotyping arrays. The results obtained may help to identify such samples, especially when no precise information about the animals’ origin is available

Keywords

Anderson D., Billingham R.E., Lampkin G.H., Madawar P.B. (1951). The use of skingrafting to distinguish between monozygotic and dizygotic twins in cattle. Heredity, 5: 379-397.Search in Google Scholar

Basrur P.K., Kanagawa H. (1969). Parallelism in chimeric ratios in heterosexual cattle twins. Genetics, 63: 419-425.Search in Google Scholar

Buoen L.C., Zhang T.Q., Veber A.F., Ruth G.R. (1992). Non-freemartin rate in Holstein heterosexual twins. Am. Assoc. Bov. Pract. Confr., 1: 300-303.Search in Google Scholar

Cady R.A., Van Vleck L.D. (1978). Factors affecting twinning and effects of twinning in Holstein dairy cattle. J. Anim. Sci., 46: 950-956.Search in Google Scholar

Conlin L.K., Thiel B.D., Bonnemann C.G., Medne L., Ernst L.M., Zackai E.H., Deardorff M.A., Krantz I.D., Hakonarson H., Spinner N.B. (2010). Mechanisms of mosaicism, chimerism and uniparental disomy identified by single nucleotide polymorphism array analysis. Hum. Mol. Genet., 19: 1263-1275.Search in Google Scholar

Craig D.W., Millis M.P., Di Stefano J.K. (2009). Genome-wide SNPgenotyping study using pooled DNAto identify candidate markers mediating susceptibility to end-stage renal disease attributed to Type 1 diabetes. Diabet. Med., 26: 1090-1098.Search in Google Scholar

Fricke P.M. (2001). Review: Twinning in Dairy Cattle. Prof. Anim. Sci., 17: 61-67.Search in Google Scholar

Hayes B.J., Bowman P.J., Chamberlain A.C., Verbyla K., Goddard M.E. (2009). Accuracy of genomic breeding values in multi-breed dairy cattle populations. Genet. Sel. Evol., 41: 51.Search in Google Scholar

Holl H.M., Lear T.L., Nolen-Walston R.D., Slack J., Brooks S.A. (2013). Detection of two equine trisomies using SNP-CGH. Mamm. Genome, 24: 252-256.Search in Google Scholar

Komisarek J., Dorynek Z.J. (2002). Genetic aspects of twinning in cattle. J. Appl. Genet., 43: 55-68.Search in Google Scholar

Meaburn E., Butcher L.M., Liu L., Fernandes C., Hansen V., Al - Chalabi A., Plo- min R., Craig I., Schalkwyk L.C. (2005). Genotyping DNApools on microarrays: tackling the QTLproblem of large samples and large numbers of SNPs. BMC Genomics, 6: 52.Search in Google Scholar

Metzger J., Philipp U., Lopes M.S.,da Camara Machado A., Felicetti M., Sil -vestrelli M., Distl O. (2013). Analysis of copy number variants by three detection algorithms and their association with body size in horses. BMC Genomics, 14: 487.Search in Google Scholar

Nielen M., Schukken Y.H., Scholl D.T., Wilbrink H.J., Brand A. (1989). Twinning in dairy cattle:astudy of risk factors and effects. Theriogenology, 32: 845-862.Search in Google Scholar

Niku M., Pessa-Morikawa T., Taponen J., Iivanainen A. (2007). Direct observation of hematopoietic progenitor chimerism in fetal freemartin cattle. BMC Vet. Res., 3: 29.Search in Google Scholar

Peiris B.L., Ralph J., Lamont S.J., Dekkers J.C. (2011) Predicting allele frequencies in DNA pools using high density SNPgenotyping data. Anim. Genet., 42: 113-116.Search in Google Scholar

Radko A., Słota E., Marczyńska J. (2010). Usefulness ofasupplementary set of microsatellite DNAmarkers for parentage testing in cattle. Pol. J. Vet. Sci., 13: 313-318.Search in Google Scholar

Staaf J., Vallon - Christersson J., Lindgren D., Juliusson G., Rosenquist R., Hög lund M., Borg A., Ringnér M. (2008). Normalization of Illumina Infinium whole-genome SNPdata improves copy number estimates and allelic intensity ratios. BMC Bioinformatics, 9: 409.Search in Google Scholar

Szyda J., Żarnecki A., Suchocki T., Kamiński S. (2011). Fitting and validating the genomic evaluation model to Polish Holstein-Friesian cattle. J. Appl. Genet., 52: 363-366.Search in Google Scholar

Vigier B., Watrin F., Magre S., Tran D., Garrigou O., Forest M.G., Josso N. (1988). Anti-mullerian hormone and freemartinism: inhibition of germ cell development and induction of seminiferous cord-like structures in rat fetal ovaries exposed in vitro to purified bovine AMH. Reprod. Nutr. Dev., 28: 1113-1128.Search in Google Scholar

Vigier B., Magre S., Charpentier G., Bezard J., Josso N. (1991). Anti-mullerian hormone and natural and experimental freemartin effect. Bull. Assoc. Anat., 75: 29-32.Search in Google Scholar

Zhang T.Q., Buoen L.C., Seguin B.E., Ruth G.R., Weber A.F. (1994). Diagnosis of freemartinism in cattle: the need for clinical and cytogenetic evaluation. J. Am. Vet. Med. Assoc., 204: 1672-1675.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo