3. Main results
Let us consider the following impulsive boundary-value problem (BVP)
(3.1)
− 1 q D − ω q , 1 q D ω , q y ζ + v ζ y ζ = λ y ζ , ζ ∈ ω 0 , d ∪ d , 1 q n ,
- {1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}y\left( \zeta \right) + v\left( \zeta \right)y\left( \zeta \right) = \lambda y\left( \zeta \right),\;\;\;\zeta \in \left( {{\omega _0},\;d} \right) \cup\left( {d,\;{1 \over {{q^n}}}} \right),
(3.2)
y ω 0 , λ cos β + D − ω q , 1 q y ω 0 , λ sin β = 0 ,
y\left( {{\omega _0},\;\lambda } \right)\;\cos \;\beta + {D_{ - {\omega \over q},{1 \over q}}}y\left( {{\omega _0},\;\lambda } \right)\;\sin \;\beta = 0,
(3.3)
y d − = η y d + ,
y\left( {d - } \right) = \eta y\left( {d + } \right),
(3.4)
D − ω q , 1 q y d − = 1 η D − ω q , 1 q y d + ,
{D_{ - {\omega \over q},{1 \over q}}}y\left( {d - } \right) = {1 \over \eta }{D_{ - {\omega \over q},{1 \over q}}}y\left( {d + } \right),
(3.5)
y 1 q n , λ cos γ + D − ω q , 1 q y 1 q n , λ sin γ = 0 ,
y\left( {{1 \over {{q^n}}},\;\lambda } \right)\;\cos \;\gamma + {D_{ - {\omega \over q},{1 \over q}}}y\left( {{1 \over {{q^n}}},\;\lambda } \right)\;\sin \;\gamma = 0,
where q ∈ (0, 1), ω 0 := ω/ (1 − q ), ω > 0, γ, β ∈ ℝ,
1 q n > d
{1 \over {{q^n}}} > d
, n ∈ ℕ := {1, 2, 3, . . .}, η > 0, λ ∈ ℂ, y (d± ) := limζd± y (ζ ) , v is a real-valued continuous function on [ω 0 , d ) ∪ (d, ∞), and has finite limits v (d± ).
A similar problem has been studied by the authors without impulsive boundary conditions ([1 ]).
H n = L ω , q 2 ω 0 , d + ˙ L ω , q 2 d , 1 q n
{H_n} = L_{\omega ,q}^2\left( {{\omega _0},\;d} \right) {^ \dot +} L_{\omega ,q}^2\left( {d,\;{1 \over {{q^n}}}} \right)
,
1 q n > d
{1 \over {{q^n}}} > d
,
n ∈ ℕ H = L ω , q 2 ω 0 , d + ˙ L ω , q 2 d , ∞
n \in {\mathbb N}\left( {H = L_{\omega ,q}^2 \left( {\omega _0 ,d} \right) {^ \dot +} L_{\omega ,q}^2 \left( {d,\infty } \right)} \right)
is a Hilbert space endowed with the following inner product
〈 y , z 〉 n : = ∫ ω 0 d y 1 z 1 ¯ d ω , q ζ + ∫ d 1 q n y 2 z 2 ¯ d ω , q ζ , ( 〈 y , z 〉 : = ∫ ω 0 d y 1 z 1 ¯ d ω , q ζ + ∫ d ∞ y 2 z 2 ¯ d ω , q ζ )
\matrix{
{{{\langle y,\;z\rangle }_n}: = \int_{{\omega _0}}^d {{y^{\left( 1 \right)}}\overline {{z^{\left( 1 \right)}}} {d_{\omega ,q}}\zeta } + \int_d^{{1 \over {{q^n}}}} {{y^{\left( 2 \right)}}\overline {{z^{\left( 2 \right)}}} {d_{\omega ,q}}\zeta } ,} \hfill \cr
{(\langle y,\;z\rangle : = \int_{{\omega _0}}^d {{y^{\left( 1 \right)}}\overline {{z^{\left( 1 \right)}}} {d_{\omega ,q}}\zeta } + \int_d^\infty {{y^{\left( 2 \right)}}\overline {{z^{\left( 2 \right)}}} {d_{\omega ,q}}\zeta )} } \hfill \cr
}
where
y ζ = y 1 ζ , ζ ∈ ω 0 , d , y 2 ζ , ζ ∈ d , ∞ ,
y\left( \zeta \right) = \left\{ {\matrix{
{{y^{\left( 1 \right)}}\left( \zeta \right)\;,\;} \hfill & {\zeta \in \left[ {{\omega _0},\;d} \right)\;,} \hfill \cr
{{y^{\left( 2 \right)}}\left( \zeta \right)\;,\;} \hfill & {\zeta \in \left( {d,\;\infty } \right)\;,} \hfill \cr
} } \right.
and
z ζ = z 1 ζ , ζ ∈ ω 0 , d , z 2 ζ , ζ ∈ d , ∞ .
z\left( \zeta \right) = \left\{ {\matrix{
{{z^{\left( 1 \right)}}\left( \zeta \right),} \hfill & {\;\zeta \in \left[ {{\omega _0},\;d} \right),} \hfill \cr
{{z^{\left( 2 \right)}}\left( \zeta \right),} \hfill & {\;\zeta \in \left( {d,\;\infty } \right).} \hfill \cr
} } \right.
Let
ψ ζ , λ = ψ 1 ζ , λ , ζ ∈ ω 0 , d , ψ 2 ζ , λ , ζ ∈ d , ∞ ,
\psi \left( {\zeta ,\;\lambda } \right) = \left\{ {\matrix{
{{\psi ^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right),} \hfill & {\;\zeta \in \left[ {{\omega _0},\;d} \right),} \hfill \cr
{{\psi ^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right),\;} \hfill & {\zeta \in \left( {d,\;\infty } \right),} \hfill \cr
} } \right.
and
θ ζ , λ = θ 1 ζ , λ , ζ ∈ ω 0 , d , θ 2 ζ , λ , ζ ∈ d , ∞ ,
\theta \left( {\zeta ,\;\lambda } \right) = \left\{ {\matrix{
{{\theta ^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right),} \hfill & {\;\zeta \in \left[ {{\omega _0},\;d} \right),} \hfill \cr
{{\theta ^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right),} \hfill & {\;\zeta \in \left( {d,\;\infty } \right),} \hfill \cr
} } \right.
be solutions of Eq. (3.1 ) satisfying the following conditions
ψ 1 ω 0 , λ = cos β , D − ω q , 1 q ψ 1 ω 0 , λ = sin β , θ 1 ω 0 , λ = sin β , D − ω q , 1 q θ 1 ω 0 , λ = − cos β ,
\eqalign{
& {\psi ^{\left( 1 \right)}}\left( {{\omega _0},\;\lambda } \right) = \;\cos \;\beta ,\;{D_{ - {\omega \over q},{1 \over q}}}{\psi ^{\left( 1 \right)}}\left( {{\omega _0},\;\lambda } \right) = \;\sin \;\beta , \cr
& {\theta ^{\left( 1 \right)}}\left( {{\omega _0},\;\lambda } \right) = \;\sin \;\beta ,\;{D_{ - {\omega \over q},{1 \over q}}}{\theta ^{\left( 1 \right)}}\left( {{\omega _0},\;\lambda } \right) = - \;\cos \;\beta , \cr}
and
θ d − , λ = η θ d + , λ , D − ω q , 1 q θ d − , λ = 1 η D − ω q , 1 q θ d + , λ , ψ d − , λ = η ψ d + , λ , D − ω q , 1 q ψ d − , λ = 1 η D − ω q , 1 q ψ d + , λ .
\matrix{
{\theta \left( {d - ,\;\lambda } \right)} \hfill & = \hfill & {\eta \theta \left( {d + ,\;\lambda } \right),} \hfill \cr
{{D_{ - {\omega \over q},{1 \over q}}}\theta \left( {d - ,\;\lambda } \right)} \hfill & = \hfill & {{1 \over \eta }{D_{ - {\omega \over q},{1 \over q}}}\theta \left( {d + ,\;\lambda } \right),} \hfill \cr
{\psi \left( {d - ,\;\lambda } \right)} \hfill & = \hfill & {\eta \psi \left( {d + ,\;\lambda } \right),} \hfill \cr
{{D_{ - {\omega \over q},{1 \over q}}}\psi \left( {d - ,\;\lambda } \right)} \hfill & = \hfill & {{1 \over \eta }{D_{ - {\omega \over q},{1 \over q}}}\psi \left( {d + ,\;\lambda } \right).} \hfill \cr
}
Then the solution of Eq. (3.1 ) be represented
ψ ζ , λ + 𝓁 λ , 1 q n θ ζ , λ
\psi \left( {\zeta ,\;\lambda } \right) + {\ell} \left( {\lambda ,\;{1 \over {{q^n}}}} \right)\theta \left( {\zeta ,\;\lambda } \right)
which satisfies the boundary condition
D − ω q , 1 q ψ 2 1 q n , λ + 𝓁 λ , 1 q n D − ω q , 1 q θ 2 1 q n , λ sin γ + ψ 2 1 q n , λ + 𝓁 λ , 1 q n θ 2 1 q n , λ cos γ = 0.
\matrix{
{\left( {{D_{ - {\omega \over q},{1 \over q}}}{\psi ^{\left( 2 \right)}}\left( {{1 \over {{q^n}}},\;\lambda } \right)\; + \;{\ell}\left( {\lambda ,\;{1 \over {{q^n}}}} \right){D_{ - {\omega \over q},{1 \over q}}}{\theta ^{\left( 2 \right)}}\left( {{1 \over {{q^n}}},\;\lambda } \right)} \right)\;\sin \;\gamma } \hfill \cr
{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \;\left( {{\psi ^{\left( 2 \right)}}\left( {{1 \over {{q^n}}},\;\lambda } \right) + {\ell} \left( {\lambda ,\;{1 \over {{q^n}}}} \right){\theta ^{\left( 2 \right)}}\left( {{1 \over {{q^n}}},\;\lambda } \right)} \right)\;\cos \;\gamma = 0.} \hfill \cr
}
Hence
𝓁 λ , 1 q n = − ψ 2 1 q n , λ cot γ + D − ω q , 1 q ψ 2 1 q n , λ θ 2 1 q n , λ cot γ + D − ω q , 1 q θ ψ 2 1 q n , λ .
{\ell} \left( {\lambda ,\;{1 \over {{q^n}}}} \right) = - {{{\psi ^{\left( 2 \right)}}\left( {{1 \over {{q^n}}},\lambda } \right){\rm{\;cot\;}}\gamma + {D_{ - {\omega \over q},{1 \over q}}}{\psi ^{\left( 2 \right)}}\left( {{1 \over {{q^n}}},\lambda } \right)} \over {\theta \left( 2 \right)\left( {{1 \over {{q^n}}},\lambda } \right){\rm{\;cot\;}}\gamma + {D_{ - {\omega \over q},{1 \over q}}}\theta {\psi ^{\left( 2 \right)}}\left( {{1 \over {{q^n}}},\lambda } \right)}}.
Lemma 3.1.
Let
Z 1 q n ζ , λ = ψ ζ , λ + 𝓁 λ , 1 q n θ ζ , λ ,
{Z_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\lambda } \right) = \psi \left( {\zeta ,\;\lambda } \right) + {\ell} \left( {\lambda ,\;{1 \over {{q^n}}}} \right)\theta \left( {\zeta ,\;\lambda } \right),
where
Z 1 q n ∈ H n
{Z_{{1 \over {{q^n}}}}} \in {H_n}
and
1 q n > d
{1 \over {{q^n}}} > d
, n ∈ ℕ. Then, for each nonreal λ, the following relations hold :
Z 1 q n ζ , λ → Z ζ , λ , n → ∞ , ∫ ω 0 d Z 1 q n ζ , λ 2 d ω , q ζ
+ ∫ d 1 q n Z 1 q n ζ , λ 2 d ω , q ζ
→ ∫ ω 0 d Z ζ , λ 2 d ω , q ζ
+ ∫ d ∞ ζ , λ 2 d ω , q ζ
, n → ∞ .
\matrix{
{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{Z_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\lambda } \right) \to Z\left( {\zeta ,\;\lambda } \right)\;,\;n \to \infty ,} \hfill \cr
{\int_{{\omega _0}}^d {{{\left| {{Z_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } + \int_d^{{1 \over {{q^n}}}} {{{\left| {{Z_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } } \hfill \cr
{\;\;\;\;\;\;\;\;\;\;\; \to \int_{{\omega _0}}^d {{{\left| {Z\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } + \int_d^\infty {{{\left| {\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } ,\;\;\;\;n \to \infty .} \hfill \cr
}
Proof
It is immediate that
Z 1 q n ζ , λ = Z ζ , λ + 𝓁 λ , 1 q n − m λ θ ζ , λ
{Z_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\lambda } \right) = Z\left( {\zeta ,\;\lambda } \right) + \left[ {\ell \left( {\lambda ,\;{1 \over {{q^n}}}} \right) - m\left( \lambda \right)} \right]\theta \left( {\zeta ,\;\lambda } \right)
where Z (·, λ ) ∈ H and m (λ ) is the Titchmarsh–Weyl function.
𝓁 λ , 1 q n
\ell \left( {\lambda ,\;{1 \over {{q^n}}}} \right)
varies on a circle with a finite radius
r 1 q n
{r_{{1 \over {{q^n}}}}}
in the plane. In the limit-circle case,
𝓁 λ , 1 q n → m λ n → ∞
\ell \left( {\lambda ,\;{1 \over {{q^n}}}} \right) \to m\left( \lambda \right)\left( {n \to \infty } \right)
; therefore
Z 1 q n ζ , λ → Z ζ , λ n → ∞ .
{Z_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\lambda } \right) \to Z\left( {\zeta ,\;\lambda } \right)\;\;\;\;\left( {n \to \infty } \right).
Hence
∫ ω 0 d Z 1 1 q n ζ , λ 2 d ω , q ζ
+ ∫ d 1 q n Z 2 1 q n ζ , λ 2 d ω , q ζ
→ ∫ ω 0 d Z 1 ζ , λ 2 d ω , q ζ
+ ∫ d ∞ Z 2 ζ , λ 2 d ω , q ζ n → ∞
,
\matrix{
{\int_{{\omega _0}}^d {{{\left| {{Z_{{{\left( 1 \right)1} \over {{q^n}}}}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } + \int_d^{{1 \over {{q^n}}}} {{{\left| {{Z_{{{\left( 2 \right)1} \over {{q^n}}}}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } } \hfill \cr
{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \to \int_{{\omega _0}}^d {{{\left| {{Z^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } + \int_d^\infty {{{\left| {{Z^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta \;\left( {n \to \infty } \right)} ,} \hfill \cr
}
due to Z (·, λ ) ∈ H. In the limit-point case, we find
𝓁 λ , 1 q n − m λ ≤ r 1 q n = 2 Im λ ∫ ω 0 d θ 1 ζ , λ 2 d ω , q ζ
+ ∫ d 1 q n θ 2 ζ , λ 2 d ω , q ζ
− 1 ,
\matrix{
{\left| {\ell \left( {\lambda ,\;{1 \over {{q^n}}}} \right) - m\left( \lambda \right)} \right| \le {r_{{1 \over {{q^n}}}}}} \hfill \cr
{\;\;\;\;\;\;\;\;\;\;\;\;\;\; = {{\left( {2\;{\mathop{\rm Im}\nolimits} \;\;\lambda \left[ {\int_{{\omega _0}}^d {{{\left| {{\theta ^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } + \int_d^{{1 \over {{q^n}}}} {{{\left| {{\theta ^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } } \right]} \right)}^{ - 1}},} \hfill \cr
}
where Im λ ≠ 0. As
r 1 q n → 0
{r_{{1 \over {{q^n}}}}} \to 0
,
Z 1 q n ζ , λ → Z ζ , λ n → ∞
{Z_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\lambda } \right) \to Z\left( {\zeta ,\;\lambda } \right)\;\left( {n \to \infty } \right)
. Moreover, we have
∫ ω 0 d | { ℓ ( λ , 1 q n ) - m ( λ ) } θ ( 1 ) ( ζ , λ ) | 2 d ω , q ζ + ∫ d 1 q n | { 𝓁 ( λ , 1 q n ) - m ( λ ) } θ ( 2 ) ( ζ , λ ) | 2 d ω , q ζ = | 𝓁 ( λ , 1 q n ) - m ( λ ) | 2 ( ∫ ω 0 d | θ ( 1 ) ( ζ , λ ) | 2 d ω , q ζ + ∫ d 1 q n | θ ( 2 ) ( ζ , λ ) | 2 d ω , q ζ ) ≤ ( 4 ( Im λ ) 2 [ ∫ ω 0 d | θ ( 1 ) ( ζ , λ ) | 2 d ω , q ζ + ∫ d 1 q n | θ ( 2 ) ( ζ , λ ) | 2 d ω , q ζ ] ) - 1 ,
\matrix{
{\int_{{\omega _0}}^d {{{\left| {\left\{ {\ell \left( {\lambda ,\;{1 \over {{q^n}}}} \right) - m\left( \lambda \right)} \right\}{\theta ^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } } \hfill \cr
{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \;\int_d^{{1 \over {{q^n}}}} {{{\left| {\left\{ {\ell\left( {\lambda ,\;{1 \over {{q^n}}}} \right) - m\left( \lambda \right)} \right\}{\theta ^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } } \hfill \cr
{\;\; = \;{{\left| {\ell \left( {\lambda ,\;{1 \over {{q^n}}}} \right) - m\left( \lambda \right)} \right|}^2}\left( {\int_{{\omega _0}}^d {{{\left| {{\theta ^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } + \int_d^{{1 \over {{q^n}}}} {{{\left| {{\theta ^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } } \right)} \hfill \cr
{\;\;\;\;\;\;\;\;\;\; \le {{\left( {4{{({\mathop{\rm Im}\nolimits} \;\;\lambda )}^2}\left[ {\int_{{\omega _0}}^d {{{\left| {{\theta ^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } + \int_d^{{1 \over {{q^n}}}} {{{\left| {{\theta ^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } } \right]} \right)}^{ - 1}},} \hfill \cr
}
which implies that
∫ ω 0 d | Z ( 1 ) 1 q n ( ζ , λ ) | 2 d ω , q ζ + ∫ d 1 q n | Z ( 2 ) 1 q n ( ζ , λ ) | 2 d ω , q ζ → ∫ ω 0 d | Z ( 1 ) ( ζ , λ ) | 2 d ω , q ζ + ∫ d ∞ | Z ( 2 ) ( ζ , λ ) | 2 d ω , q ζ .
\begin{array}{*{20}c}
{\int_{\omega _0 }^d {\left| {Z_{_{\frac{1}
{{q^n }}} }^{\left( 1 \right)} \left( {\zeta ,\lambda } \right)} \right|^2 d_{\omega ,q} \zeta } + \int_d^{\frac{1}
{{q^n }}} {\left| {Z_{\frac{1}
{{q^n }}}^{\left( 2 \right)} \left( {\zeta ,\lambda } \right)} \right|^2 d_{\omega ,q} \zeta } } \hfill \\
{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \to \int_{\omega _0 }^d {\left| {Z^{\left( 1 \right)} \left( {\zeta ,\lambda } \right)} \right|^2 d_{\omega ,q} \zeta } + \int_d^\infty {\left| {Z^{\left( 2 \right)} \left( {\zeta ,\lambda } \right)} \right|^2 d_{\omega ,q} \zeta } .} \hfill \\
\end{array}
Let
f ∈ H n 1 q n > d , n ∈ ℕ
f \in H_n \left( {\frac{1}{{q^n }} > d,n \in {\mathbb N}} \right)
. Define
(3.6)
G 1 q n ζ , ς , λ = Z 1 q n ζ , λ θ ζ , λ , ς ≤ ζ , θ ζ , λ Z 1 q n ς , λ , ς > ζ ,
R 1 q n f ζ , λ = ∫ ω 0 d G 1 q n ζ , ς , λ f 1 ς d ω , q ς + ∫ d 1 q n G 1 q n ζ , ς , λ f 2 ς d ω , q ς , λ ∈ ℂ .
\eqalign{
& {G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma ,\;\lambda } \right) = \left\{ {\matrix{
{{Z_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\lambda } \right)\theta \left( {\zeta ,\;\lambda } \right),\;} \hfill & {\varsigma \le \zeta ,} \hfill \cr
{\theta \left( {\zeta ,\;\lambda } \right){Z_{{1 \over {{q^n}}}}}\left( {\varsigma ,\;\lambda } \right),\;} \hfill & {\varsigma > \zeta ,} \hfill \cr
} } \right. \cr
& \matrix{
{\left( {{R_{{1 \over {{q^n}}}}}f} \right)\left( {\zeta ,\;\lambda } \right) = \int_{{\omega _0}}^d {{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma ,\;\lambda } \right){f^{\left( 1 \right)}}\left( \varsigma \right){d_{\omega ,q}}\varsigma } } \hfill \cr
{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \int_d^{{1 \over {{q^n}}}} {{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma ,\;\lambda } \right){f^{\left( 2 \right)}}\left( \varsigma \right){d_{\omega ,q}}\varsigma ,\;\lambda \in {\mathbb C}} .} \hfill \cr
} \cr}
Without loss of generality, we can assume that λ = 0 is not an eigenvalue of the BVP (3.1 )–(3.5 ). Now let us prove that the resolvent operator is compact.
Theorem 3.2.
G 1 q n ζ , ς λ = 0 ( 1 q n > d , n ∈ ℕ )
{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma } \right)\left( {\lambda = 0} \right)\;({1 \over {{q^n}}} > d,\;n \in {\mathbb N})
defined as (3.6 ) is a ω, q-Hilbert–Schmidt kernel, i.e.,
∫ ω 0 d ∫ ω 0 d | G 1 q n ζ , ς | 2 d ω , q ζ d ω , q ς < + ∞ , ∫ d 1 q n ∫ d 1 q n | G 1 q n ζ , ς | 2 d ω , q ζ d ω , q ς < + ∞ .
\eqalign{
& \mathop \smallint \nolimits_{{\omega _0}}^d \mathop \smallint \nolimits_{{\omega _0}}^d |{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma } \right){|^2}{d_{\omega ,q}}\zeta {d_{\omega ,q}}\varsigma< + \infty , \cr
& \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} |{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma } \right){|^2}{d_{\omega ,q}}\zeta {d_{\omega ,q}}\varsigma< + \infty . \cr}
Proof
By (3.6 ), it is obvious that
∫ ω 0 d d ω , q ζ ∫ ω 0 d | G 1 q n ζ , ς | 2 d ω , q ς < + ∞ , ∫ d 1 q n d ω , q ζ ∫ d 1 q n | G 1 q n ζ , ς | 2 d ω , q ς < + ∞ ,
\eqalign{
& \mathop \smallint \nolimits_{{\omega _0}}^d {d_{\omega ,q}}\zeta \mathop \smallint \nolimits_{{\omega _0}}^d |{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma } \right){|^2}{d_{\omega ,q}}\varsigma< + \infty , \cr
& \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} {d_{\omega ,q}}\zeta \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} |{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma } \right){|^2}{d_{\omega ,q}}\varsigma< + \infty , \cr}
due to
Z 1 q n
{Z_{{1 \over {{q^n}}}}}
, (·, λ ), θ (·, λ ) ∈ Hn
( 1 q n > d , n ∈ ℕ )
(\frac{1}{{q^n }} > d,n \in {\mathbb N})
. Hence
(3.7)
∫ ω 0 d ∫ ω 0 d | G 1 q n ζ , ς | 2 d ω , q ζ d ω , q ς < + ∞ , ∫ d 1 q n ∫ d 1 q n | G 1 q n ζ , ς | 2 d ω , q ζ d ω , q ς < + ∞ .
\eqalign{
& \mathop \smallint \nolimits_{{\omega _0}}^d \mathop \smallint \nolimits_{{\omega _0}}^d |{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma } \right){|^2}{d_{\omega ,q}}\zeta {d_\omega }_{,q}\varsigma< + \infty , \cr
& \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} |{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma } \right){|^2}{d_{\omega ,q}}\zeta {d_{\omega ,q}}\varsigma< + \infty . \cr}
Let A {ti } = {xi }, i ∈ ℕ, where
(3.8)
x i = ∑ k = 1 ∞ η i k t k , i , k ∈ ℕ .
{x_i} = \mathop \sum \nolimits_{k = 1}^\infty {\eta _{ik}}{t_k},\;\,\,i,\;k \in {\rm{\mathbb N}}.
If
(3.9)
∑ i , k = 1 ∞ | η i k | 2 < + ∞ ,
\sum\limits_{i,k = 1}^\infty {|{\eta _{ik}}{|^2}< + \infty } ,
then the operator A is compact in l 2 .
Theorem 3.4.
Let 𝒯 be the ω, q-integral operator 𝒯: Hn → Hn (
1 q n > d , n ∈ ℕ
\frac{1}{{q^n }} > d,\,n \in {\mathbb N}
),
T f ζ = ∫ ω 0 d G 1 q n ζ , ς f 1 ς d ω , q ς , ζ ∈ ω 0 , d , ∫ d 1 q n G 1 q n ζ , ς f 2 ς d ω , q ς , ζ ∈ d , 1 q n ,
\left( {{\cal T}f} \right)\left( \zeta \right) = \left\{ {\matrix{
{\mathop \smallint \nolimits_{{\omega _0}}^d {G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma } \right){f^{\left( 1 \right)}}\left( \varsigma \right){d_{\omega ,q}}\varsigma ,\;\zeta \in \left[ {{\omega _0},\;d} \right)\;,} \hfill \cr
{\mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} {G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma } \right){f^{\left( 2 \right)}}\left( \varsigma \right){d_{\omega ,q}}\varsigma ,\;\zeta \in \left( {d,\;{1 \over {{q^n}}}} \right],} \hfill \cr
} } \right.
where
f ζ = f 1 ζ , ζ ∈ ω 0 , d , f 2 ζ , ζ ∈ d , 1 q n .
f\left( \zeta \right) = \left\{ {\matrix{
{{f^{\left( 1 \right)}}\left( \zeta \right)\;,\;\zeta \in \left[ {{\omega _0},\;d} \right)\;,} \hfill \cr
{{f^{\left( 2 \right)}}\left( \zeta \right)\;,\;\zeta \in \left( {d,\;{1 \over {{q^n}}}} \right].} \hfill \cr
} } \right.
Then 𝒯 is a compact self-adjoint operator in space Hn .
Proof
Let
φ i : = φ i ζ = φ i 1 ζ , ζ ∈ ω 0 , d , φ i 2 ζ , ζ ∈ d , 1 q n , ( i , n ∈ ℕ , 1 q n > d )
\varphi _i : = \varphi _i \left( \zeta \right) = \left\{ {\begin{array}{*{20}c}
{\varphi _i^{\left( 1 \right)} \left( \zeta \right),} \hfill & {\zeta \in \left[ {\omega _0 ,d} \right),} \hfill \\
{\varphi _i^{\left( 2 \right)} \left( \zeta \right),} \hfill & {\zeta \in \left( {d,\frac{1}
{{q^n }}} \right],} \hfill \\
\end{array} } \right.\,\,\,\,\,(i,n \in {\mathbb N},\frac{1}
{{q^n }} > d)
be a complete, orthonormal basis of Hn . Let i, k, n ∈ ℕ,
1 q n > d
{1 \over {{q^n}}} > d
. Write
t i = 〈 f , φ i 〉 n = ∫ ω 0 d f ( 1 )
( ζ ) φ i ( 1 ) ( ζ ) ¯ d ω , q ζ + ∫ d 1 q n f ( 2 ) ( ζ ) φ i ( 2 ) ( ζ ) ¯ d ω , q ζ , x i = 〈 g , φ i 〉 n = ∫ ω 0 d g ( 1 ) ( ζ ) φ i ( 1 ) ( ζ ) ¯ d ω , q ζ + ∫ d 1 q n g ( 2 ) ( ζ ) φ i ( 2 ) ( ζ ) ¯ d ω , q ζ , η i k = ∫ ω 0 d ∫ ω 0 d G 1 q n ( ζ , ς ) φ i ( 1 ) ( ζ ) φ k ( 1 ) ( ς ) ¯ d ω , q ζ d ω , q ς + ∫ d 1 q n ∫ d 1 q n G 1 q n ( ζ , ς ) φ i ( 2 ) ( ζ ) φ k ( 2 ) ( ς ) ¯ d ω , q ζ d ω , q ς .
\begin{gathered}
t_i = \left\langle {f,\varphi _i } \right\rangle _n = \mathop \smallint \nolimits_{\omega _0 }^d f^{\left( 1 \right)} \left( \zeta \right)\overline {\varphi _i^{\left( 1 \right)} \left( \zeta \right)} d_{\omega ,q} \zeta \hfill \\
\,\,\,\,\,\,\,\, + \mathop \smallint \nolimits_d^{\frac{1}
{{q^n }}} f^{\left( 2 \right)} \left( \zeta \right)\overline {\varphi _i^{\left( 2 \right)} \left( \zeta \right)} d_{\omega ,q} \zeta , \hfill \\
x_i = \langle g,\varphi _i \rangle _n = \mathop \smallint \nolimits_{\omega _0 }^d g^{\left( 1 \right)} \left( \zeta \right)\overline {\varphi _i^{\left( 1 \right)} \left( \zeta \right)} d_{\omega ,q} \zeta \hfill \\
\,\,\,\,\,\,\, + \mathop \smallint \nolimits_d^{\frac{1}
{{q^n }}} g^{\left( 2 \right)} \left( \zeta \right)\overline {\varphi _i^{\left( 2 \right)} \left( \zeta \right)} d_{\omega ,q} \zeta , \hfill \\
\eta _{ik} = \mathop \smallint \nolimits_{\omega _0 }^d \mathop \smallint \nolimits_{\omega _0 }^d G_{\frac{1}
{{q^n }}} \left( {\zeta ,\varsigma } \right)\varphi _i^{\left( 1 \right)} \left( \zeta \right)\overline {\varphi _k^{\left( 1 \right)} \left( \varsigma \right)} d_{\omega ,q} \zeta d_{\omega ,q} \varsigma \hfill \\
\,\,\,\,\,\,\, + \mathop \smallint \nolimits_d^{\frac{1}
{{q^n }}} \mathop \smallint \nolimits_d^{\frac{1}
{{q^n }}} G_{\frac{1}
{{q^n }}} \left( {\zeta ,\varsigma } \right)\varphi _i^{\left( 2 \right)} \left( \zeta \right)\overline {\varphi _k^{\left( 2 \right)} \left( \varsigma \right)} d_{\omega ,q} \zeta d_{\omega ,q} \varsigma . \hfill \\
\end{gathered}
Hn is mapped isometrically on to l 2 . By this mapping, 𝒯 transforms into the operator A defined by (3.8 ) in l 2 and (3.7 ) is translated into (3.9 ). By Theorems 3.2 and 3.3 , we see that A and 𝒯 are compact operators.
Let h, g ∈ Hn and
1 q n > d
{1 \over {{q^n}}} > d
, n ∈ ℕ. Then we have
〈 𝒯 h , g 〉 n = ∫ d ω 0 ( 𝒯 h ( 1 ) ) ( ζ ) g ( 1 ) ( ζ ¯ ) d ω , q ζ + ∫ 1 q n d ( 𝒯 h ( 2 ) ) ( ζ ) g ( 2 ) ( ζ ¯ ) d ω , q ζ = ∫ d ω 0 ∫ d ω 0 G 1 q n ( ζ , ς ) h ( 1 ) ( ς ) d ω , q ς g ( 1 ) ( ζ ) ¯ d ω , q ζ + ∫ 1 q n d ∫ 1 q n d G 1 q n ( ζ , ς ) h ( 2 ) ( ς ) d ω , q ς g ( 2 ) ( ζ ) ¯ d ω , q ζ = ∫ d ω 0 h ( 1 ) ( ς ) ( ∫ d ω 0 G 1 q n ( ς , ζ ) g ( 1 ) ( ζ ) ¯ d ω , q ζ ) d ω , q ς + ∫ 1 q n d h ( 2 ) ( ς ) ( ∫ 1 q n d G 1 q n ( ς , ζ ) g ( 2 ) ( ζ ) ¯ d ω , q ζ ) d ω , q ς = 〈 h , T g 〉 n ,
\eqalign{
& \matrix{
{{{\left\langle {{\cal T}h,g} \right\rangle }_n}} \hfill & { = \mathop \smallint \nolimits_{{\omega _0}}^d ({\cal T}{h^{\left( 1 \right)}})\left( \zeta \right)\overline {{g^{\left( 1 \right)}}(\zeta } ){d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} ({\cal T}{h^{\left( 2 \right)}})\left( \zeta \right)\overline {{g^{\left( 2 \right)}}(\zeta } ){d_{\omega ,q}}\zeta } \hfill \cr
{} \hfill & { = \mathop \smallint \nolimits_{{\omega _0}}^d \mathop \smallint \nolimits_{{\omega _0}}^d {G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma } \right){h^{\left( 1 \right)}}\left( \varsigma \right){d_{\omega ,q}}\varsigma \overline {{g^{\left( 1 \right)}}\left( \zeta \right)} {d_{\omega ,q}}\zeta } \hfill \cr
{} \hfill & {\,\,\, + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} {G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma } \right){h^{\left( 2 \right)}}\left( \varsigma \right){d_{\omega ,q}}\varsigma \overline {{g^{\left( 2 \right)}}\left( \zeta \right)} {d_{\omega ,q}}\zeta } \hfill \cr
{} \hfill & { = \mathop \smallint \nolimits_{{\omega _0}}^d {h^{\left( 1 \right)}}\left( \varsigma \right)\left( {\mathop \smallint \nolimits_{{\omega _0}}^d {G_{{1 \over {{q^n}}}}}\left( {\varsigma ,\;\zeta } \right)\overline {{g^{\left( 1 \right)}}\left( \zeta \right)} {d_{\omega ,q}}\zeta } \right){d_{\omega ,q}}\varsigma } \hfill \cr
{} \hfill & {\,\,\, + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} {h^{\left( 2 \right)}}\left( \varsigma \right)\left( {\mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} {G_{{1 \over {{q^n}}}}}\left( {\varsigma ,\;\zeta } \right)\overline {{g^{\left( 2 \right)}}\left( \zeta \right)} {d_{\omega ,q}}\zeta } \right){d_{\omega ,q}}\varsigma } \hfill \cr
{} \hfill & { = {{\left\langle {h,\;Tg} \right\rangle }_n},} \hfill \cr
} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\, \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \cr
& \,\,\,\,\,\,\,\,\,\,\,\, \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \cr
& \,\,\,\,\,\,\,\,\,\, \cr}
since
G 1 q n ζ , γ
{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\gamma } \right)
is a symmetric function.
From Theorem 3.4 , we conclude that 𝒯 has a discrete spectrum. Let
λ m , 1 q n
{\lambda _{m,{1 \over {{q^n}}}}}
and
θ m , 1 q n ζ : = θ m , 1 q n 1 ζ , λ m , 1 q n , ζ ∈ ω 0 , d , θ m , 1 q n 2 ζ , λ m , 1 q n , ζ ∈ d , 1 q n , ( m , n ∈ ℕ , 1 q n > d )
\theta _{m,\frac{1}
{{q^n }}} \left( \zeta \right): = \left\{ {\begin{array}{*{20}c}
{\theta _{m,\frac{1}
{{q^n }}}^{\left( 1 \right)} \left( {\zeta ,\lambda _{m,\frac{1}
{{q^n }}} } \right),\,\,\,\,\,\zeta \in \left[ {\omega _0 ,d} \right),} \hfill \\
{\theta _{m,\frac{1}
{{q^n }}}^{\left( 2 \right)} \left( {\zeta ,\lambda _{m,\frac{1}
{{q^n }}} } \right),\,\,\,\,\zeta \in \left( {d,\frac{1}
{{q^n }}} \right],} \hfill \\
\end{array} } \right.\,\,\,\,\,\,\,(m,n \in \mathbb{N},\,\,\frac{1}
{{q^n }} > d)
be the eigenvalues and eigenfunctions of the BVP (3.1 )–(3.5 ) and
α m , 1 q n 2 = ∫ ω 0 d θ m , 1 q n 1 2 ζ d ω , q ς + ∫ d 1 q n θ m , 1 q n 2 2 ζ d ω , q ς .
\alpha _{m,{1 \over {{q^n}}}}^2 = \mathop \smallint \nolimits_{{\omega _0}}^d \theta _{m,{1 \over {{q^n}}}}^{\left( 1 \right)2}\left( \zeta \right){d_{\omega ,q}}\varsigma + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} \theta _{m,{1 \over {{q^n}}}}^{\left( 2 \right)2}\left( \zeta \right){d_{\omega ,q}}\varsigma .
By Theorem 3.4 and the Hilbert–Schmidt theorem, we infer that
(3.10)
∫ ω 0 d | f 1 ζ | 2 d ω , q ζ + ∫ d 1 q n | f 2 ζ | 2 d ω , q ζ = ∑ m = 1 ∞ 1 α m , 1 q n 2 ∫ ω 0 d f 1 ζ ϕ m , 1 q n 1 ζ d ω , q ζ + ∫ d 1 q n f 2 ζ ϕ m , 1 q n 2 ζ d ω , q ζ 2 .
\eqalign{
& \mathop \smallint \nolimits_{{\omega _0}}^d |{f^{\left( 1 \right)}}\left( \zeta \right){|^2}{d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} |{f^{\left( 2 \right)}}\left( \zeta \right){|^2}{d_{\omega ,q}}\zeta \cr
& = \mathop \sum \nolimits_{m = 1}^\infty {1 \over {\alpha _{m,{1 \over {{q^n}}}}^2}}{\left| {\mathop \smallint \nolimits_{{\omega _0}}^d {f^{\left( 1 \right)}}\left( \zeta \right)\phi _{m,{1 \over {{q^n}}}}^{\left( 1 \right)}\left( \zeta \right){d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} {f^{\left( 2 \right)}}\left( \zeta \right)\phi _{m,{1 \over {{q^n}}}}^{\left( 2 \right)}\left( \zeta \right){d_{\omega ,q}}\zeta } \right|^2}. \cr}
Define
ϱ 1 q n λ = − ∑ λ < λ m , 1 n < 0 1 α m , 1 q n 2 , for λ ≤ 0 , ∑ 0 ≤ λ m , 1 q n < λ 1 α m , 1 q n 2 , for λ > 0.
{\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right) = \left\{ {\matrix{
{ - \sum\limits_{\lambda< {\lambda _{m,{1 \over n}}}< 0} {{1 \over {\alpha _{m,{1 \over {{q^n}}}}^2}}\;,} } \hfill & {{\rm{for}}\;\lambda \le 0,} \hfill \cr
{\sum\limits_{0 \le {\lambda _{m,{1 \over {{q^n}}}}}< \lambda } {{1 \over {\alpha _{m,{1 \over {{q^n}}}}^2}},} } \hfill & {{\rm{for}}\;\lambda > 0.} \hfill \cr
} } \right.
Then, (3.10 ) can be written as
(3.11)
∫ ω 0 d f 1 ζ 2 d ω , q ζ + ∫ d 1 q n f 2 ζ 2 d ω , q ζ = ∫ − ∞ ∞ | F λ | 2 d ϱ 1 q n λ ,
\mathop \smallint \nolimits_{{\omega _0}}^d {\left| {{f^{\left( 1 \right)}}\left( \zeta \right)} \right|^2}{d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} {\left| {{f^{\left( 2 \right)}}\left( \zeta \right)} \right|^2}{d_{\omega ,q}}\zeta = \mathop \smallint \nolimits_{ - \infty }^\infty |F\left( \lambda \right){|^2}d{\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right),
where
F λ = ∫ ω 0 d f 1 ζ ϕ m , 1 q n 1 ζ d ω , q ζ + ∫ d 1 q n f 2 ζ ϕ m , 1 q n 2 ζ d ω , q ζ .
F\left( \lambda \right) = \mathop \smallint \nolimits_{{\omega _0}}^d {f^{\left( 1 \right)}}\left( \zeta \right)\phi _{m,{1 \over {{q^n}}}}^{\left( 1 \right)}\left( \zeta \right){d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} {f^{\left( 2 \right)}}\left( \zeta \right)\phi _{m,{1 \over {{q^n}}}}^{\left( 2 \right)}\left( \zeta \right){d_{\omega ,q}}\zeta .
Lemma 3.5.
For any positive S, there is a positive number B = B (S ) not depending on n so that
− ∨ - S S ϱ 1 q n λ = ∑ − S ≤ λ m , 1 q n < S 1 α m , 1 q n 2 = ϱ 1 q n S − ϱ 1 q n − S < B .
- \mathop \lor \limits_{{\text{ - }}S}^S \varrho _{\frac{1}
{{q^n }}} \left( \lambda \right) = \sum\limits_{ - S \leqslant \lambda _{m,\frac{1}
{{q^n }}}< S} {\frac{1}
{{\alpha _{m,\frac{1}
{{q^n }}}^2 }} = \varrho _{\frac{1}
{{q^n }}} \left( S \right) - \varrho _{\frac{1}
{{q^n }}} \left( { - S} \right)< B.}
Proof
Let sin β ≠ 0. Since θ (ζ , λ ) is continuous in domain −S ≤ λ ≤ S,
ω 0 , d ∪ ( d , 1 q n ]
\left[ {{\omega _0},\;d} \right) \cup (d,\;{1 \over {{q^n}}}]
, and the condition θ (1) (ω 0 , λ ) = sin β, there exists a positive number h such that for |λ| < S,
(3.12)
1 h 2 ∫ ω 0 ω 0 + h θ 1 ζ , λ d ω , q ζ 2 > 1 2 sin 2 β .
{1 \over {{h^2}}}{\left( {\mathop \smallint \nolimits_{{\omega _0}}^{{\omega _0} + h} {\theta ^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right){d_{\omega ,q}}\zeta } \right)^2} > {1 \over 2}{\rm{si}}{{\rm{n}}^2}\beta .
Let
f h ζ = 1 h , ω 0 ≤ ζ ≤ ω 0 + h , 0 , ζ > ω 0 + h .
{f_h}\left( \zeta \right) = \left\{ {\matrix{
{{1 \over h},} \hfill & {{\omega _0} \le \zeta \le {\omega _0} + h,} \hfill \cr
{0,} \hfill & {\zeta > {\omega _0} + h.} \hfill \cr
} } \right.
From (3.12 ), we find
∫ ω 0 ω 0 + h f h 2 ζ d ω , q ζ = 1 h = ∫ − ∞ ∞ 1 h ∫ ω 0 ω 0 + h θ 1 ζ , λ d ω , q ζ 2 d ϱ 1 q n λ ≥ ∫ − S S 1 h ∫ ω 0 ω 0 + h θ 1 ζ , λ d ω , q ζ 2 d ϱ α λ > 1 2 sin 2 β ϱ 1 q n S − ϱ 1 q n − S .
\matrix{
{\mathop \smallint \nolimits_{{\omega _0}}^{{\omega _0} + h} f_h^2\left( \zeta \right){d_{\omega ,q}}\zeta } \hfill & { = {1 \over h} = \mathop \smallint \nolimits_{ - \infty }^\infty {{\left( {{1 \over h}\mathop \smallint \nolimits_{{\omega _0}}^{{\omega _0} + h} {\theta ^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right){d_{\omega ,q}}\zeta } \right)}^2}d{\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right)} \hfill \cr
{} \hfill & { \ge \mathop \smallint \nolimits_{ - S}^S {{\left( {{1 \over h}\mathop \smallint \nolimits_{{\omega _0}}^{{\omega _0} + h} {\theta ^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right){d_{\omega ,q}}\zeta } \right)}^2}d{\varrho _\alpha }\left( \lambda \right)} \hfill \cr
{} \hfill & { > {1 \over 2}{\rm{si}}{{\rm{n}}^2}\beta \left\{ {{\varrho _{{1 \over {{q^n}}}}}\left( S \right) - {\varrho _{{1 \over {{q^n}}}}}\left( { - S} \right)} \right\}.} \hfill \cr
}
If sin β = 0, then we define fh (ζ ) as
f h ζ = 1 h 2 , ω 0 ≤ ζ ≤ ω 0 + h , 0 , ζ > ω 0 + h .
\eqalign{
& {f_h}\left( \zeta \right) = \left\{ {\matrix{
{{1 \over {{h^2}}},} \hfill & {\;{\omega _0} \le \zeta \le {\omega _0} + h,} \hfill \cr
{0,} \hfill & {\zeta > {\omega _0} + h.} \hfill \cr
} } \right. \cr
& \matrix{
{} \hfill \cr
\; \hfill \cr
} \cr}
This proves the lemma.
Now, we will give an expansion into a Fourier series of resolvent. By ω, q- integration by parts, we obtain
∫ d ω 0 [ 1 q D - ω q , 1 q D ω , q y ( 1 )
( ζ , λ ) - v ( ζ ) y ( 1 ) ( ζ , λ ) ] θ m , 1 q n ( 1 ) ( ζ ) d ω , q ζ + ∫ 1 q n d [ 1 q D - ω q , 1 q D ω , q y ( 2 ) ( ζ , λ ) - v ( ζ ) y ( 2 ) ( ζ , λ ) ] θ m , 1 q n
( 2 ) ( ζ ) d ω , q ζ = ∫ d ω 0 [ 1 q D - ω q , 1 q D ω , q ϕ m , 1 q n ( 1 ) ( ζ ) - v ( ζ ) θ m , 1 q n ( 1 ) ( ζ ) ] y ( 1 ) ( ζ , λ ) d ω , q ζ + ∫ 1 q n
d [ 1 q D - ω q , 1 q
D ω , q ϕ m , 1 q n
( 2 )
( ζ ) - v ( ζ ) θ m , 1 q n
( 2 )
( ζ )
] y ( 2 ) ( ζ , λ ) d ω , q ζ = - λ m , 1 q n
∫ d ω 0 y ( 1 ) ( ζ , λ ) θ m , 1 q n
( 1 ) ( ζ ) d ω , q ζ - λ m , 1 q n
∫ 1 q n
d y ( 2 ) ( ζ , λ ) θ m , 1 q n
( 2 ) ( ζ ) d ω , q ζ = - λ m , 1 q n
φ m ( λ ) ,
\eqalign{
& \mathop \smallint \nolimits_{{\omega _0}}^d \left[ {{1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}{y^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right) - v\left( \zeta \right){y^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right)} \right]\theta _{m,{1 \over {{q^n}}}}^{\left( 1 \right)}\left( \zeta \right){d_{\omega ,q}}\zeta \cr
& \,\,\,\, + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} \left[ {{1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}{y^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right) - v\left( \zeta \right){y^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right)} \right]\theta _{m,{1 \over {{q^n}}}}^{\left( 2 \right)}\left( \zeta \right){d_{\omega ,q}}\zeta \cr
& = \mathop \smallint \nolimits_{{\omega _0}}^d \left[ {{1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}\phi _{m,{1 \over {{q^n}}}}^{\left( 1 \right)}\left( \zeta \right) - v\left( \zeta \right)\theta _{m,{1 \over {{q^n}}}}^{\left( 1 \right)}\left( \zeta \right)} \right]{y^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right){d_{\omega ,q}}\zeta \cr
& \,\,\,\, + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} \left[ {{1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}\phi _{m,{1 \over {{q^n}}}}^{\left( 2 \right)}\left( \zeta \right) - v\left( \zeta \right)\theta _{m,{1 \over {{q^n}}}}^{\left( 2 \right)}\left( \zeta \right)} \right]{y^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right){d_{\omega ,q}}\zeta \cr
& = - {\lambda _{m,{1 \over {{q^n}}}}}\mathop \smallint \nolimits_{{\omega _0}}^d {y^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right)\theta _{m,{1 \over {{q^n}}}}^{\left( 1 \right)}\left( \zeta \right){d_{\omega ,q}}\zeta - {\lambda _{m,{1 \over {{q^n}}}}}\mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} {y^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right)\theta _{m,{1 \over {{q^n}}}}^{\left( 2 \right)}\left( \zeta \right){d_{\omega ,q}}\zeta \cr
& = - {\lambda _{m,{1 \over {{q^n}}}}}{\varphi _m}\left( \lambda \right), \cr}
where m ∈ ℕ. Let
y ζ , λ = ∑ m = 1 ∞ φ m λ ψ m , 1 q n ζ , a m = ∫ ω 0 d f ζ ψ m , 1 q n 1 ζ d ω , q ζ + ∫ d 1 q n f ζ ψ m , 1 q n 2 ζ d ω , q ζ ,
\eqalign{
& y\left( {\zeta ,\;\lambda } \right) = \sum\limits_{m = 1}^\infty {{\varphi _m}\left( \lambda \right){\psi _{m,{1 \over {{q^n}}}}}\left( \zeta \right),} \cr
& {a_m} = \mathop \smallint \nolimits_{{\omega _0}}^d f\left( \zeta \right)\psi _{m,{1 \over {{q^n}}}}^{\left( 1 \right)}\left( \zeta \right){d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} f\left( \zeta \right)\psi _{m,{1 \over {{q^n}}}}^{\left( 2 \right)}\left( \zeta \right){d_{\omega ,q}}\zeta , \cr}
where m ∈ ℕ. Since y (ζ, λ ) satisfies the equation
− 1 q D − ω q , 1 q D ω , q y ζ , λ + v ζ − λ y ζ , λ = f ζ ,
- {1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}y\left( {\zeta ,\;\lambda } \right) + \left( {v\left( \zeta \right) - \lambda } \right)y\left( {\zeta ,\;\lambda } \right) = f\left( \zeta \right),
we find
a m = ∫ ω 0 d − 1 q D − ω q , 1 q D ω , q y 1 ζ , λ + v ζ − λ y 1 ζ , λ θ m , 1 q n 1 ζ d ω , q ζ + ∫ d 1 q n − 1 q D − ω q , 1 q D ω , q y 2 ζ , λ + v ζ − λ y 2 ζ , λ θ m , 1 q n 2 ζ d ω , q ζ = λ m , 1 q n φ m λ − λ φ m λ , m , n ∈ ℕ , 1 q n > d .
\eqalign{
& a_m = \mathop \smallint \nolimits_{\omega _0 }^d \left[ { - \frac{1}
{q}D_{ - \frac{\omega }
{q},\frac{1}
{q}} D_{\omega ,q} y^{\left( 1 \right)} \left( {\zeta ,\lambda } \right) + \left( {v\left( \zeta \right) - \lambda } \right)y^{\left( 1 \right)} \left( {\zeta ,\lambda } \right)} \right]\theta _{m,\frac{1}
{{q^n }}}^{\left( 1 \right)} \left( \zeta \right)d_{\omega ,q} \zeta \cr
& \,\,\,\,\,\,\,\,\, + \mathop \smallint \nolimits_d^{\frac{1}
{{q^n }}} \left[ { - \frac{1}
{q}D_{ - \frac{\omega }
{q},\frac{1}
{q}} D_{\omega ,q} y^{\left( 2 \right)} \left( {\zeta ,\lambda } \right) + \left( {v\left( \zeta \right) - \lambda } \right)y^{\left( 2 \right)} \left( {\zeta ,\lambda } \right)} \right]\theta _{m,\frac{1}
{{q^n }}}^{\left( 2 \right)} \left( \zeta \right)d_{\omega ,q} \zeta \cr
& \,\,\,\,\,\,\,\, = \lambda _{m,\frac{1}
{{q^n }}} \varphi _m \left( \lambda \right) - \lambda \varphi _m \left( \lambda \right)\,\,{\text{, }}m,n \in {\mathbb N},\frac{1}
{{q^n }} > d. \cr}
Thus, we get
φ m λ = a m λ m , 1 q n − λ ( m , n ∈ ℕ , 1 q n > d ) ,
\varphi _m \left( \lambda \right) = \frac{{a_m }}
{{\lambda _{m,\frac{1}
{{q^n }}} - \lambda }}\,\,\,\,\,\,(m,n \in {\mathbb N},\frac{1}
{{q^n }} > d),
and
y ζ , λ = G 1 q n ζ , ⋅ , λ , f ⋅ ¯ n = ∑ m = 1 ∞ a m θ m , 1 q n ζ λ m , 1 q n − λ .
y\left( {\zeta ,\;\lambda } \right) = {\left\langle {{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\; \cdot ,\;\lambda } \right),\;\overline {f\left( \cdot \right)} } \right\rangle _n} = \sum\limits_{m = 1}^\infty {{{{a_m}{\theta _{m,{1 \over {{q^n}}}}}\left( \zeta \right)} \over {{\lambda _{m,{1 \over {{q^n}}}}} - \lambda }}.}
Hence
(3.13)
R 1 q n f ζ , z = ∑ m = 1 ∞ θ m , 1 q n ζ α m , 1 q n 2 λ m , 1 q n − z f ⋅ , θ m , 1 q n ⋅ n = ∫ − ∞ ∞ θ ζ , λ λ − z f ⋅ , θ m , 1 q n ⋅ n d ϱ 1 q n λ .
\eqalign{
& \left( {{R_{{1 \over {{q^n}}}}}f} \right)\left( {\zeta ,\;z} \right) = \sum\limits_{m = 1}^\infty {{{{\theta _{m,{1 \over {{q^n}}}}}\left( \zeta \right)} \over {\alpha _{m,{1 \over {{q^n}}}}^2\left( {{\lambda _{m,{1 \over {{q^n}}}}} - z} \right)}}{{\left\langle {f\left( \cdot \right),\;{\theta _{m,{1 \over {{q^n}}}}}\left( \cdot \right)} \right\rangle }_n}} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop \smallint \nolimits_{ - \infty }^\infty {{\theta \left( {\zeta ,\lambda } \right)} \over {\lambda - z}}\left\{ {{{\left\langle {f\left( \cdot \right),\;{\theta _{m,{1 \over {{q^n}}}}}\left( \cdot \right)} \right\rangle }_n}} \right\}d{\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right). \cr}
Lemma 3.6.
For each nonreal z and fixed ζ, the following relation holds
(3.14)
∫ − ∞ ∞ θ ζ , λ z − λ 2 d ϱ 1 q n λ < S .
\mathop \smallint \nolimits_{ - \infty }^\infty {\left| {{{\theta \left( {\zeta ,\lambda } \right)} \over {z - \lambda }}} \right|^2}d{\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right)< S.
Proof
Writing
f ς = θ m , 1 q n ς α m , 1 q n
f\left( \varsigma \right) = {{{\theta _{m,{1 \over {{q^n}}}}}\left( \varsigma \right)} \over {{\alpha _{m,{1 \over {{q^n}}}}}}}
yields
(3.15)
1 α m , 1 q n G 1 q n ζ , ⋅ , λ , θ m , 1 q n ⋅ n = θ m , 1 q n ζ α m , 1 q n λ m , 1 q n − z ,
{1 \over {{\alpha _{m,{1 \over {{q^n}}}}}}}{\left\langle {{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\; \cdot ,\;\lambda } \right),\;{\theta _{m,{1 \over {{q^n}}}}}\left( \cdot \right)} \right\rangle _n} = {{{\theta _{m,{1 \over {{q^n}}}}}\left( \zeta \right)} \over {{\alpha _{m,{1 \over {{q^n}}}}}\left( {{\lambda _{m,{1 \over {{q^n}}}}} - z} \right)}},
due to the eigenfunctions
θ m , 1 q n ( ζ )
{\theta _{m,{1 \over {{q_n}}}}}(\zeta )
are orthogonal. Combining (3.15 ) and (3.10 ), we see that
∫ ω 0 d G 1 q n ζ , ς , z 2 d ω , q ς + ∫ d 1 q n G 1 q n ζ , ς , z 2 d ω , q ς = ∑ m = 1 ∞ θ m , 1 q n ζ 2 α m , 1 q n 2 λ m , 1 q n − z 2 = ∫ − ∞ ∞ θ ζ , λ λ − z 2 d ϱ 1 q n λ .
\eqalign{
& \mathop \smallint \nolimits_{{\omega _0}}^d {\left| {{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma ,\;z} \right)} \right|^2}{d_{\omega ,q}}\varsigma + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} {\left| {{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma ,\;z} \right)} \right|^2}{d_{\omega ,q}}\varsigma \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop \sum \nolimits_{m = 1}^\infty {{{{\left| {{\theta _{m,{1 \over {{q^n}}}}}\left( \zeta \right)} \right|}^2}} \over {\alpha _{m,{1 \over {{q^n}}}}^2{{\left| {{\lambda _{m,{1 \over {{q^n}}}}} - z} \right|}^2}}} = \mathop \smallint \nolimits_{ - \infty }^\infty {\left| {{{\theta \left( {\zeta ,\lambda } \right)} \over {\lambda - z}}} \right|^2}d{\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right). \cr}
By Lemma 3.1 , the integral on the left converges and the result is immediate.
It follows from Lemma 8 that the set
ϱ 1 q n λ
\left\{ {{\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right)} \right\}
is bounded. Using Helly’s theorems ([15 ]), one can find a sequence {1/qnk } such that
ϱ 1 q n k λ
{\varrho _{{1 \over {{q^n}k}}}}\left( \lambda \right)
converges to a monotone function ϱ (λ ) (as nk → ∞).
Lemma 3.7.
Let z be a nonreal number and ζ be a fixed number. Then we have
(3.16)
∫ − ∞ ∞ θ ζ , λ z − λ 2 d ϱ λ ≤ S .
\mathop \int \nolimits_{ - \infty }^\infty {\left| {{{\theta \left( {\zeta ,\lambda } \right)} \over {z - \lambda }}} \right|^2}d\varrho \left( \lambda \right) \le S.
Proof
For arbitrary η > 0, it follows from (3.14 ) that
∫ − η η ϕ ς , λ z − λ 2 d ϱ 1 q n λ < S .
\mathop \int \nolimits_{ - \eta }^\eta {\left| {{{\phi \left( {\varsigma ,\lambda } \right)} \over {z - \lambda }}} \right|^2}d{\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right)< S.
Letting η → ∞ and n → ∞, we get the desired result.
Lemma 3.8.
For arbitrary η > 0, we have
∫ − ∞ − η d ϱ λ | z − λ | 2 < ∞ , ∫ η ∞ d ϱ λ | z − λ | 2 < ∞ .
\mathop \int \nolimits_{ - \infty }^{ - \eta } {{d\varrho \left( \lambda \right)} \over {|z - \lambda {|^2}}}< \infty ,\;\mathop {\,\,\,\,\,\smallint }\nolimits_\eta ^\infty {{d\varrho \left( \lambda \right)} \over {|z - \lambda {|^2}}}< \infty .
Proof
Let sin β ≠ 0. Writing ζ = 0 in (3.16 ), we obtain
∫ − ∞ ∞ d ϱ λ | z − λ | 2 < ∞ .
\mathop \int \nolimits_{ - \infty }^\infty {{d\varrho \left( \lambda \right)} \over {|z - \lambda {|^2}}}< \infty .
Let sin β = 0. Then
1 α m , 1 q n D q , ζ G 1 q n ζ , ⋅ , z , θ m , 1 q n ⋅ n = D q , ζ θ m , 1 q n ζ α m , 1 q n λ m , 1 q n − z .
{1 \over {{\alpha _{m,{1 \over {{q^n}}}}}}}{\left\langle {{D_{q,\zeta }}{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\; \cdot ,\;z} \right),\;{\theta _{m,{1 \over {{q^n}}}}}\left( \cdot \right)} \right\rangle _n} = {{{D_{q,\zeta }}{\theta _{m,{1 \over {{q^n}}}}}\left( \zeta \right)} \over {{\alpha _{m,{1 \over {{q^n}}}}}\left( {{\lambda _{m,{1 \over {{q^n}}}}} - z} \right)}}.
By (3.11 ), we find
∫ ω 0 d D q , ζ G 1 q n ζ , ς , z 2 d ω , q ζ + ∫ d 1 q n D q , ζ G 1 q n ζ , ς , z 2 d ω , q ζ = ∫ − ∞ ∞ D q , ζ θ ζ , λ z − λ 2 d ϱ 1 q n λ .
\eqalign{
& \mathop \smallint \nolimits_{{\omega _0}}^d {\left| {{D_{q,\zeta }}{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma ,\;z} \right)} \right|^2}{d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} {\left| {{D_{q,\zeta }}{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma ,\;z} \right)} \right|^2}{d_{\omega ,q}}\zeta \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop \smallint \nolimits_{ - \infty }^\infty {\left| {{{{D_{q,\zeta }}\theta \left( {\zeta ,\lambda } \right)} \over {z - \lambda }}} \right|^2}d{\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right). \cr}
Lemma 3.9.
Let
R f ζ , z = ∫ ω 0 ∞ G ζ , ς , z f ς d ω , q ς ,
\left( {Rf} \right)\left( {\zeta ,\;z} \right) = \mathop \smallint \nolimits_{{\omega _0}}^\infty G\left( {\zeta ,\;\varsigma ,\;z} \right)f\left( \varsigma \right){d_{\omega ,q}}\varsigma ,
where f ∈ H, and
G ζ , ς , z = Z ζ , z θ ς , z , ς ≤ ζ , ζ ≠ d , ς ≠ d , θ ζ , z Z ς , z , ς > ζ , ζ ≠ d , ς ≠ d .
G\left( {\zeta ,\;\varsigma ,\;z} \right) = \left\{ {\matrix{
{Z\left( {\zeta ,\;z} \right)\theta \left( {\varsigma ,\;z} \right),} \hfill & {\;\varsigma \le \zeta ,\;\,\,\,\,\zeta \ne d,\;\,\,\,\varsigma \ne d,} \hfill \cr
{\theta \left( {\zeta ,\;z} \right)Z\left( {\varsigma ,\;z} \right)\;,} \hfill & {\;\varsigma > \zeta ,\;\,\,\,\,\zeta \ne d,\;\,\,\varsigma \ne d.} \hfill \cr
} } \right.
Then, we have
∫ ω 0 d | R f ζ , z | 2 d ω , q ζ + ∫ d ∞ | R f ζ , z | 2 d ω , q ζ ≤ 1 v 2 ∫ ω 0 d f 1 ζ 2 d ω , q ζ + ∫ d ∞ f 2 ζ 2 d ω , q ζ ,
\eqalign{
& \mathop \smallint \nolimits_{{\omega _0}}^d |\left( {Rf} \right)\left( {\zeta ,\;z} \right){|^2}{d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^\infty |\left( {Rf} \right)\left( {\zeta ,\;z} \right){|^2}{d_{\omega ,q}}\zeta \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \le {1 \over {{v^2}}}\mathop \smallint \nolimits_{{\omega _0}}^d {\left| {{f^{\left( 1 \right)}}\left( \zeta \right)} \right|^2}{d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^\infty {\left| {{f^{\left( 2 \right)}}\left( \zeta \right)} \right|^2}{d_{\omega ,q}}\zeta , \cr}
where v = Im z.
Proof
Combining (3.13 ) and (3.10 ), for each
1 q n > d
{1 \over {{q^n}}} > d
, n ∈ ℕ, we obtain
∫ ω 0 d R 1 q n f ζ , z 2 d ω , q ζ + ∫ d 1 q n R 1 q n f ζ , z 2 d ω , q ζ = ∑ m = 1 ∞ 〈 f ⋅ , θ m , 1 q n ⋅ , z 〉 n 2 α m , 1 q n 2 | λ m , 1 q n − z | 2
= 1 v 2 ∫ ω 0 d f 1 ς 2 d ω , q ς + 1 v 2 ∫ d 1 q n f 2 ς 2 d ω , q ς .
\eqalign{
& \mathop \smallint \nolimits_{{\omega _0}}^d {\left| {\left( {{R_{{1 \over {{q^n}}}}}f} \right)\left( {\zeta ,\;z} \right)} \right|^2}{d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} {\left| {\left( {{R_{{1 \over {{q^n}}}}}f} \right)\left( {\zeta ,\;z} \right)} \right|^2}{d_{\omega ,q}}\zeta \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop \sum \nolimits_{m = 1}^\infty {{{{\left| {{{\langle f\left( \cdot \right),{\theta _{m,{1 \over {{q^n}}}}}\left( { \cdot ,z} \right)\rangle }_n}} \right|}^2}} \over {\alpha _{m,{1 \over {{q^n}}}}^2|{\lambda _{m,{1 \over {{q^n}}}}} - z{|^2}}} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {1 \over {{v^2}}}\mathop \smallint \nolimits_{{\omega _0}}^d {\left| {{f^{\left( 1 \right)}}\left( \varsigma \right)} \right|^2}{d_{\omega ,q}}\varsigma + {1 \over {{v^2}}}\mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} {\left| {{f^{\left( 2 \right)}}\left( \varsigma \right)} \right|^2}{d_{\omega ,q}}\varsigma . \cr}
Letting n → ∞, we get the desired result.
Theorem 3.10 (Integral Representation of the Resolvent).
For every non-real z and for each f ∈ H, we obtain
R f ζ , z = ∫ − ∞ ∞ θ ζ , λ λ − z F λ d ϱ λ ,
\left( {Rf} \right)\left( {\zeta ,\;z} \right) = \mathop \smallint \nolimits_{ - \infty }^\infty {{\theta \left( {\zeta ,\lambda } \right)} \over {\lambda - z}}F\left( \lambda \right)d\varrho \left( \lambda \right),
where
F λ = ∫ ω 0 d f 1 ζ θ 1 ζ , λ d ω , q ζ + lim σ → ∞ ∫ d σ f 2 ζ θ 2 ζ , λ d ω , q ζ .
F\left( \lambda \right) = \mathop \smallint \nolimits_{{\omega _0}}^d {f^{\left( 1 \right)}}\left( \zeta \right){\theta ^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right){d_{\omega ,q}}\zeta + \mathop {\lim }\limits_{\sigma \to \infty } \mathop \smallint \nolimits_d^\sigma {f^{\left( 2 \right)}}\left( \zeta \right){\theta ^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right){d_{\omega ,q}}\zeta .
Proof
Suppose that f (ζ ) = fσ (ζ ) satisfies (3.2 )–(3.4 ) and vanishes outside the set [ω 0 , d ) ∪ (d , σ ], where
d < σ < 1 q n
d< \sigma< {1 \over {{q^n}}}
, n ∈ ℕ. Let
F σ λ = ∫ ω 0 d f σ 1 ζ θ 1 ζ , λ d ω , q ζ + ∫ d σ f σ 2 ζ θ 2 ζ , λ d ω , q ζ .
{F_\sigma }\left( \lambda \right) = \mathop \smallint \nolimits_{{\omega _0}}^d f_\sigma ^{\left( 1 \right)}\left( \zeta \right){\theta ^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right){d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^\sigma f_\sigma ^{\left( 2 \right)}\left( \zeta \right){\theta ^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right){d_{\omega ,q}}\zeta .
By (3.13 ), we see that
(3.17)
R 1 q n f σ ζ , z = ∫ − ∞ ∞ θ ζ , λ λ − z F σ λ d ϱ 1 q n λ = ∫ − ∞ − a θ ζ , λ λ − z F σ λ d ϱ 1 q n λ + ∫ − a a θ ζ , λ λ − z F σ λ d ϱ 1 q n λ + ∫ a ∞ θ ζ , λ λ − z F σ λ d ϱ 1 q n λ = I 1 + I 2 + I 3 .
\eqalign{
& \matrix{
{\left( {{R_{{1 \over {{q^n}}}}}{f_\sigma }} \right)\left( {\zeta ,\;z} \right)} \hfill & { = \mathop \smallint \nolimits_{ - \infty }^\infty {{\theta \left( {\zeta ,\lambda } \right)} \over {\lambda - z}}{F_\sigma }\left( \lambda \right)d{\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right)} \hfill \cr
{} \hfill & { = \mathop \smallint \nolimits_{ - \infty }^{ - a} {{\theta \left( {\zeta ,\lambda } \right)} \over {\lambda - z}}{F_\sigma }\left( \lambda \right)d{\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right) + \mathop \smallint \nolimits_{ - a}^a {{\theta \left( {\zeta ,\lambda } \right)} \over {\lambda - z}}{F_\sigma }\left( \lambda \right)d{\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right)} \hfill \cr
{} \hfill & { + \mathop \smallint \nolimits_a^\infty {{\theta \left( {\zeta ,\lambda } \right)} \over {\lambda - z}}{F_\sigma }\left( \lambda \right)d{\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right) = {I_1} + {I_2} + {I_3}.} \hfill \cr
} \cr
& \cr}
Firstly, we will estimate I 1 . From (3.13 ), we deduce that
I 1 = ∫ - ∞ - a θ ( ζ , λ )
z - λ F σ ( λ ) d ϱ 1 q n
( λ ) = ∑ λ k , 1 q n
< - a θ k , 1 q n
( ζ ) α k , 1 q n
2 ( z - λ k , 1 q n
) { ∫ ω 0 d f σ ( 1 )
( ζ ) θ k , q n
( 1 ) ( ζ ) d ω , q ζ + ∫ d σ f σ ( 2 )
( ζ ) θ k , q n
( 2 ) ( ζ ) d ω , q ζ } ≤ ( ∑ λ k , 1 q n
< - a θ k , 1 q n
2 ( ζ )
α k , 1 q n
2 | z - λ k , 1 q n
| 2
)
1 / 2 × ( ∑ λ k , 1 q n
< - a 1 α k , 1 q n
2
| ∫ ω 0
d f σ ( 1 )
( ζ ) θ k ,
q n
( 1 ) ( ζ ) d ω , q ζ + ∫ d σ f σ ( 2 )
( ζ ) θ k ,
q n
( 2 ) ( ζ ) d ω , q ζ | 2
)
1 / 2 .
\matrix{
{{I_1}} \hfill & { = \mathop \smallint \nolimits_{ - \infty }^{ - a} {{\theta \left( {\zeta ,\lambda } \right)} \over {z - \lambda }}{F_\sigma }\left( \lambda \right)d{\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right)} \hfill \cr
{} \hfill & { = \sum\limits_{{\lambda _{k,{1 \over {{q^n}}}}}< - a} {{{{\theta _{k,{1 \over {{q^n}}}}}\left( \zeta \right)} \over {\alpha _{k,{1 \over {{q^n}}}}^2\left( {z - {\lambda _{k,{1 \over {{q^n}}}}}} \right)}}\left\{ {\mathop \smallint \nolimits_{{\omega _0}}^d f_\sigma ^{\left( 1 \right)}\left( \zeta \right)\theta _{k,{{_1} \over {{q^n}}}}^{(1)}\left( \zeta \right){d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^\sigma f_\sigma ^{\left( 2 \right)}\left( \zeta \right)\theta _{k,{{_1} \over {{q^n}}}}^{(2)}\left( \zeta \right){d_{\omega ,q}}\zeta } \right\}} } \hfill \cr
{} \hfill & { \le {{\left( {\sum\limits_{{\lambda _{k,{1 \over {{q^n}}}}}< - a} {{{\theta _{k,{1 \over {{q^n}}}}^2\left( \zeta \right)} \over {\alpha _{k,{1 \over {{q^n}}}}^2{{\left| {z - {\lambda _{k,{1 \over {{q^n}}}}}} \right|}^2}}}} } \right)}^{1/2}}} \hfill \cr
{} \hfill & { \times {{\left( {\sum\limits_{{\lambda _{k,{1 \over {{q^n}}}}}< - a} {{1 \over {\alpha _{k,{1 \over {{q^n}}}}^2}}{{\left| {\mathop \smallint \nolimits_{{\omega _0}}^d f_\sigma ^{\left( 1 \right)}\left( \zeta \right)\theta _{k,{{_1} \over {{q^n}}}}^{(1)}\left( \zeta \right){d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^\sigma f_\sigma ^{\left( 2 \right)}\left( \zeta \right)\theta _{k,{{_1} \over {{q^n}}}}^{(2)}\left( \zeta \right){d_{\omega ,q}}\zeta } \right|}^2}} } \right)}^{1/2}}.} \hfill \cr
}
Integrating twice by parts, we find
∫ ω 0
d f σ ( 1 )
( ζ ) θ k ,
q n
( 1 ) ( ζ ) d ω , q ζ + ∫ σ d f σ ( 2 )
( ζ ) θ k ,
q n
( 2 ) ( ζ ) d ω , q ζ = - 1 λ k , 1 q n
∫ ω 0
d f σ ( 1 )
( ζ ) { 1 q D - ω q , 1 q
D ω , q θ k , q n
( 1 ) ( ζ ) - v ( ζ ) θ k , q n
( 1 ) ( ζ )
} d ω , q ζ - 1 λ k , 1 q n
∫ d σ f σ ( 2 )
( ζ ) { 1 q D - ω q , 1 q
D ω , q θ k , q n
( 2 ) ( ζ ) - v ( ζ ) θ k , q n
( 2 ) ( ζ )
} d ω , q ζ = - 1 λ k , 1 q n
∫ ω 0
d { 1 q D - ω q , 1 q
D ω , q f σ ( 1 )
( ζ ) - v ( ζ ) f σ ( 1 )
( ζ )
} θ k ,
q n
( 1 ) ( ζ ) d ω , q ζ - 1 λ k , 1 q n
∫ d σ { 1 q D - ω q , 1 q
D ω , q f σ ( 2 )
( ζ ) - v ( ζ ) f σ ( 2 )
( ζ )
} θ k ,
q n
( 2 ) ( ζ ) d ω , q ζ .
\eqalign{
& \mathop \smallint \nolimits_{{\omega _0}}^d f_\sigma ^{\left( 1 \right)}\left( \zeta \right)\theta _{k,{{_1} \over {{q^n}}}}^{(1)}\left( \zeta \right){d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^\sigma f_\sigma ^{\left( 2 \right)}\left( \zeta \right)\theta _{k,{{_1} \over {{q^n}}}}^{(2)}\left( \zeta \right){d_{\omega ,q}}\zeta \cr
& = - {1 \over {{\lambda _{k,{1 \over {{q^n}}}}}}}\mathop \smallint \nolimits_{{\omega _0}}^d f_\sigma ^{\left( 1 \right)}\left( \zeta \right)\left\{ {{1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}\theta _{k,{{_1} \over {{q^n}}}}^{(1)}\left( \zeta \right) - v\left( \zeta \right)\theta _{k,{{_1} \over {{q^n}}}}^{(1)}\left( \zeta \right)} \right\}{d_{\omega ,q}}\zeta \cr
& - {1 \over {{\lambda _{k,{1 \over {{q^n}}}}}}}\mathop \smallint \nolimits_d^\sigma f_\sigma ^{\left( 2 \right)}\left( \zeta \right)\left\{ {{1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}\theta _{k,{{_1} \over {{q^n}}}}^{(2)}\left( \zeta \right) - v\left( \zeta \right)\theta _{k,{{_1} \over {{q^n}}}}^{(2)}\left( \zeta \right)} \right\}{d_{\omega ,q}}\zeta \cr
& = - {1 \over {{\lambda _{k,{1 \over {{q^n}}}}}}}\mathop \smallint \nolimits_{{\omega _0}}^d \left\{ {{1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}f_\sigma ^{\left( 1 \right)}\left( \zeta \right) - v\left( \zeta \right)f_\sigma ^{\left( 1 \right)}\left( \zeta \right)} \right\}\theta _{k,{{_1} \over {{q^n}}}}^{(1)}\left( \zeta \right){d_{\omega ,q}}\zeta \cr
& - {1 \over {{\lambda _{k,{1 \over {{q^n}}}}}}}\mathop \smallint \nolimits_d^\sigma \left\{ {{1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}f_\sigma ^{\left( 2 \right)}\left( \zeta \right) - v\left( \zeta \right)f_\sigma ^{\left( 2 \right)}\left( \zeta \right)} \right\}\theta _{k,{{_1} \over {{q^n}}}}^{(2)}\left( \zeta \right){d_{\omega ,q}}\zeta . \cr}
By Lemma 3.6 , we get
I 1 ≤ K 1 / 2 a × ∑ λ k , 1 q n < − a 1 α k , 1 q n 2 ∫ ω 0 d { 1 q D − ω q , 1 q D ω , q f σ 1 ζ − v ζ f σ 1 ζ } θ k , 1 q n ( 1 ) ζ d ω , q ζ + ∫ d σ 1 q D − ω q , 1 q D ω , q f σ 2 ζ − v ζ f σ 2 ζ θ k , 1 q n ( 2 ) ζ d ω , q ζ 2 1 / 2 .
\matrix{
{{I_1}} \hfill & { \le {{{K^{1/2}}} \over a}} \hfill \cr
{} \hfill & { \times \left( {\sum\limits_{{\lambda _{k,{1 \over {{q^n}}}}}< - a} {{1 \over {\alpha _{k,{1 \over {{q^n}}}}^2}}\mathop \smallint \nolimits_{{\omega _0}}^d \{ {1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}f_\sigma ^{\left( 1 \right)}\left( \zeta \right) - v\left( \zeta \right)f_\sigma ^{\left( 1 \right)}\left( \zeta \right)\} \theta _{k,{{{_1}} \over {{q^n}}}}^{(1)}\left( \zeta \right){d_{\omega ,q}}\zeta } } \right.} \hfill \cr
{} \hfill & {\,\,\,{{\left. {{{\left. {\, + \mathop \smallint \nolimits_d^\sigma \left\{ {{1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}f_\sigma ^{\left( 2 \right)}\left( \zeta \right) - v\left( \zeta \right)f_\sigma ^{\left( 2 \right)}\left( \zeta \right)} \right\}\theta _{k,{{_1} \over {{q^n}}}}^{(2)}\left( \zeta \right){d_{\omega ,q}}\zeta } \right|}^2}} \right)}^{1/2}}.} \hfill \cr
}
Using Bessel inequality, we see that
I 1 ≤ K 1 / 2 a ∫ ω 0 σ 1 q D − ω q , 1 q D ω , q f σ 1 ζ − v ζ f σ 1 ζ 2 d ω , q ζ + ∫ d σ 1 q D − ω q , 1 q D ω , q f σ 2 ζ − v ζ f σ 2 ζ 2 d ω , q ζ 1 / 2 = C a .
\eqalign{
& {I_1} \le {{{K^{1/2}}} \over a}\left[ {\mathop \smallint \nolimits_{{\omega _0}}^\sigma {{\left| {{1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}f_\sigma ^{\left( 1 \right)}\left( \zeta \right) - v\left( \zeta \right)f_\sigma ^{\left( 1 \right)}\left( \zeta \right)} \right|}^2}{d_{\omega ,q}}\zeta } \right. \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + {\left. {\mathop \smallint \nolimits_d^\sigma {{\left| {{1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}f_\sigma ^{\left( 2 \right)}\left( \zeta \right) - v\left( \zeta \right)f_\sigma ^{\left( 2 \right)}\left( \zeta \right)} \right|}^2}{d_{\omega ,q}}\zeta } \right]^{1/2}} = {C \over a}. \cr}
It is proved similarly that
I 3 ≤ C a
{I_3} \le {C \over a}
. Then I 1 and I 3 tend to zero as a → ∞, uniformly in
1 q n
{1 \over {{q_n}}}
. It follows from the Helly selection theorem and (3.17 ) that
(3.18)
R f σ ζ , z = ∫ − ∞ ∞ θ ζ , λ z − λ F σ λ d ϱ λ .
\left( {R{f_\sigma }} \right)\left( {\zeta ,\;z} \right) = \mathop \smallint \nolimits_{ - \infty }^\infty {{\theta \left( {\zeta ,\lambda } \right)} \over {z - \lambda }}{F_\sigma }\left( \lambda \right)d\varrho \left( \lambda \right).
As is known, if f (· ) ∈ H, then we find a sequence
f σ ς σ = 1 ∞
\left\{ {{f_\sigma }\left( \varsigma \right)} \right\}_{\sigma = 1}^\infty
that satisfies the previous conditions and tends to f (ζ ) as σ → ∞. From (3.10 ), the sequence of Fourier transform converges to the transform of f (ζ ). Using Lemmas
3.7 and 3.9 , we can pass to the limit σ → ∞ in (3.18 ). Thus, we get the desired result.
Remark 3.11.
Using Theorem 3.10 , we infer that
∫ ω 0 ∞ ( R f 1 ) ς , z g 1 ς d ω , q ς + ∫ d ∞ ( R f 2 ) ς , z g 2 ς d ω , q ς = ∫ − ∞ ∞ F λ G λ z − λ d ϱ λ ,
\eqalign{
& \mathop \smallint \nolimits_{{\omega _0}}^\infty (R{f^{\left( 1 \right)}})\left( {\varsigma ,\;z} \right){g^{\left( 1 \right)}}\left( \varsigma \right){d_{\omega ,q}}\varsigma + \mathop \smallint \nolimits_d^\infty (R{f^{\left( 2 \right)}})\left( {\varsigma ,\;z} \right){g^{\left( 2 \right)}}\left( \varsigma \right){d_{\omega ,q}}\varsigma \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop \smallint \nolimits_{ - \infty }^\infty {{F\left( \lambda \right)G\left( \lambda \right)} \over {z - \lambda }}d\varrho \left( \lambda \right), \cr}
where
F λ = ∫ ω 0 d f 1 ζ θ 1 ζ , λ d ω , q ζ + lim σ → ∞ ∫ d σ f 2 ζ θ 2 ζ , λ d ω , q ζ ,
F\left( \lambda \right) = \mathop \smallint \nolimits_{{\omega _0}}^d {f^{\left( 1 \right)}}\left( \zeta \right){\theta ^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right){d_{\omega ,q}}\zeta + \mathop {\lim }\limits_{\sigma \to \infty } \mathop \smallint \nolimits_d^\sigma {f^{\left( 2 \right)}}\left( \zeta \right){\theta ^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right){d_{\omega ,q}}\zeta ,
and
G λ = ∫ ω 0 d g 1 ζ θ 1 ζ , λ d ω , q ζ + lim σ → ∞ ∫ ω 0 σ g 2 ζ θ 2 ζ , λ d ω , q ζ .
G\left( \lambda \right) = \mathop \smallint \nolimits_{{\omega _0}}^d {g^{\left( 1 \right)}}\left( \zeta \right){\theta ^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right){d_{\omega ,q}}\zeta + \mathop {\lim }\limits_{\sigma \to \infty } \mathop \smallint \nolimits_{{\omega _0}}^\sigma {g^{\left( 2 \right)}}\left( \zeta \right){\theta ^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right){d_{\omega ,q}}\zeta .