Acceso abierto

The Resolvent of Impulsive Singular Hahn–Sturm–Liouville Operators

,  y   
18 ene 2024

Cite
Descargar portada

Introduction

Impulsive differential equations are one of the interesting topics in the theory of differential equations. These equations serve as basic models to study the dynamics of processes that are subject to sudden changes in their states. These types of problems are especially encountered in heat and mass transfer problems ([17]). There are many studies on this subject in the literature [2, 6, 7, 8, 9, 12, 13, 14, 19, 23].

W. Hahn introduced the concept of the Hahn derivative to the literature in 1949 [10]. With this definition he made, he gathered two important operators under a single structure. These are the q-difference and forward difference operators. In 2018, Annaby et al. [4] using this definition instead of the classical derivative, investigated the fundamental properties of the Sturm–Liouville problems. In [5], the authors studied singular q-Sturm-Liouville equations. In [18], the author studied a q-analog of the singular Dirac problem. Recently in [21], the author proved a spectral expansion theorem by constructing the spectral function of the Hahn–Sturm–Liouville equation in the singular case under impulsive conditions.

In this paper, our aim is to consider Hahn–Sturm–Liouville problems under impulsive boundary conditions. The integral representation of the resolvent operator corresponding to this type of problem will be obtained using Weyl’s method [16, 22, 24].

Preliminaries

Now, we provide a concise overview of the Hahn calculus [3, 4, 10, 11]. Let q ∈ (0, 1), ω0 := ω/ (1 − q) , ω > 0, and let Ψ : J ⊂ ℝ ω ℝ be a function such that ω0J.

Definition 2.1 ([10], [11]).

The Hahn derivative Dω,q Ψ is defined by Dω,qΨζ=Ψω+qζΨζω+q1ζ,ζω0,Ψω0 ,ζ=ω0, {D_{\omega ,q}}\Psi \left( \zeta \right) = \left\{ {\matrix{ {{{\Psi \left( {\omega + q\zeta } \right) - \Psi \left( \zeta \right)} \over {\omega + \left( {q - 1} \right)\zeta }},} \hfill & {\zeta \ne {\omega _0},} \hfill \cr {\Psi '\left( {{\omega _0}} \right)\;,} \hfill & {\zeta = {\omega _0},} \hfill \cr } } \right. where the expression Ψ (ω0) shows the ordinary derivative of Ψ at ω0.

Definition 2.2 ([3]).

Let a, b, ω0J. The Hahn integral (ω, q-integral) is defined by abΨζdω,qζ :=ω0bΨζdω,qζ ω0aΨζdω,qζ , \int_a^b {\Psi \left( \zeta \right){d_{\omega ,q}}\zeta } : = \int_{{\omega _0}}^b {\Psi \left( \zeta \right){d_{\omega ,q}}\zeta } - \int_{{\omega _0}}^a {\Psi \left( \zeta \right){d_{\omega ,q}}\zeta } , where ω0ζΨ(t)dω,qt:=((1-q)ζ-ω)n=0qnΨ(ω1-qn1-q+ζqn),ζJ, \int_{{\omega _0}}^\zeta {\Psi \left( t \right){d_{\omega ,q}}t: = \left( {\left( {1 - q} \right)\zeta - \omega } \right)} \sum\limits_{n = 0}^\infty {{q^n}\Psi \left( {\omega {{1 - {q^n}} \over {1 - q}} + \zeta {q^n}} \right)} ,\;\;\;\zeta \in J, provided that the series converges at ζ = a and ζ = b.

Definition 2.3.

The ω, q-Wronskian of Ψ1 and Ψ2 is defined by Wω,qΨ1, Ψ2:=Ψ1Dω,qΨ2Ψ2Dω,qΨ1. {W_{\omega ,q}}\left( {{\Psi _1},\;{\Psi _2}} \right): = {\Psi _1}{D_{\omega ,q}}{\Psi _2} - {\Psi _2}{D_{\omega ,q}}{\Psi _1}.

Main results

Let us consider the following impulsive boundary-value problem (BVP) 1qDωq,1qDω,qyζ+vζyζ=λyζ,ζω0, dd, 1qn, - {1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}y\left( \zeta \right) + v\left( \zeta \right)y\left( \zeta \right) = \lambda y\left( \zeta \right),\;\;\;\zeta \in \left( {{\omega _0},\;d} \right) \cup\left( {d,\;{1 \over {{q^n}}}} \right), yω0, λ cos β+Dωq,1qyω0, λ sin β=0, y\left( {{\omega _0},\;\lambda } \right)\;\cos \;\beta + {D_{ - {\omega \over q},{1 \over q}}}y\left( {{\omega _0},\;\lambda } \right)\;\sin \;\beta = 0, yd=ηyd+, y\left( {d - } \right) = \eta y\left( {d + } \right), Dωq,1qyd=1ηDωq,1qyd+, {D_{ - {\omega \over q},{1 \over q}}}y\left( {d - } \right) = {1 \over \eta }{D_{ - {\omega \over q},{1 \over q}}}y\left( {d + } \right), y1qn, λ cos γ+Dωq,1qy1qn, λ sin γ=0, y\left( {{1 \over {{q^n}}},\;\lambda } \right)\;\cos \;\gamma + {D_{ - {\omega \over q},{1 \over q}}}y\left( {{1 \over {{q^n}}},\;\lambda } \right)\;\sin \;\gamma = 0, where q ∈ (0, 1), ω0 := ω/ (1 − q), ω > 0, γ, β ∈ ℝ, 1qn>d {1 \over {{q^n}}} > d , n ∈ ℕ := {1, 2, 3, . . .}, η > 0, λ ∈ ℂ, y() := limζd± y (ζ) , v is a real-valued continuous function on [ω0, d) ∪ (d, ∞), and has finite limits v().

A similar problem has been studied by the authors without impulsive boundary conditions ([1]).

Hn=Lω,q2ω0, d+˙Lω,q2d, 1qn {H_n} = L_{\omega ,q}^2\left( {{\omega _0},\;d} \right) {^ \dot +} L_{\omega ,q}^2\left( {d,\;{1 \over {{q^n}}}} \right) , 1qn>d {1 \over {{q^n}}} > d , nH=Lω,q2ω0, d+˙Lω,q2d,  n \in {\mathbb N}\left( {H = L_{\omega ,q}^2 \left( {\omega _0 ,d} \right) {^ \dot +} L_{\omega ,q}^2 \left( {d,\infty } \right)} \right) is a Hilbert space endowed with the following inner product y, zn:=ω0dy1z1¯dω,qζ+d1qny2z2¯dω,qζ,(y, z:=ω0dy1z1¯dω,qζ+dy2z2¯dω,qζ) \matrix{ {{{\langle y,\;z\rangle }_n}: = \int_{{\omega _0}}^d {{y^{\left( 1 \right)}}\overline {{z^{\left( 1 \right)}}} {d_{\omega ,q}}\zeta } + \int_d^{{1 \over {{q^n}}}} {{y^{\left( 2 \right)}}\overline {{z^{\left( 2 \right)}}} {d_{\omega ,q}}\zeta } ,} \hfill \cr {(\langle y,\;z\rangle : = \int_{{\omega _0}}^d {{y^{\left( 1 \right)}}\overline {{z^{\left( 1 \right)}}} {d_{\omega ,q}}\zeta } + \int_d^\infty {{y^{\left( 2 \right)}}\overline {{z^{\left( 2 \right)}}} {d_{\omega ,q}}\zeta )} } \hfill \cr } where yζ=y1ζ , ζω0, d ,y2ζ , ζd,  , y\left( \zeta \right) = \left\{ {\matrix{ {{y^{\left( 1 \right)}}\left( \zeta \right)\;,\;} \hfill & {\zeta \in \left[ {{\omega _0},\;d} \right)\;,} \hfill \cr {{y^{\left( 2 \right)}}\left( \zeta \right)\;,\;} \hfill & {\zeta \in \left( {d,\;\infty } \right)\;,} \hfill \cr } } \right. and zζ=z1ζ, ζω0, d,z2ζ, ζd, . z\left( \zeta \right) = \left\{ {\matrix{ {{z^{\left( 1 \right)}}\left( \zeta \right),} \hfill & {\;\zeta \in \left[ {{\omega _0},\;d} \right),} \hfill \cr {{z^{\left( 2 \right)}}\left( \zeta \right),} \hfill & {\;\zeta \in \left( {d,\;\infty } \right).} \hfill \cr } } \right.

Let ψζ, λ=ψ1ζ, λ, ζω0, d,ψ2ζ, λ, ζd, , \psi \left( {\zeta ,\;\lambda } \right) = \left\{ {\matrix{ {{\psi ^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right),} \hfill & {\;\zeta \in \left[ {{\omega _0},\;d} \right),} \hfill \cr {{\psi ^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right),\;} \hfill & {\zeta \in \left( {d,\;\infty } \right),} \hfill \cr } } \right. and θζ, λ=θ1ζ, λ, ζω0, d,θ2ζ, λ, ζd, , \theta \left( {\zeta ,\;\lambda } \right) = \left\{ {\matrix{ {{\theta ^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right),} \hfill & {\;\zeta \in \left[ {{\omega _0},\;d} \right),} \hfill \cr {{\theta ^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right),} \hfill & {\;\zeta \in \left( {d,\;\infty } \right),} \hfill \cr } } \right. be solutions of Eq. (3.1) satisfying the following conditions ψ1ω0, λ= cos β, Dωq,1qψ1ω0, λ= sin β,θ1ω0, λ= sin β, Dωq,1qθ1ω0, λ= cos β, \eqalign{ & {\psi ^{\left( 1 \right)}}\left( {{\omega _0},\;\lambda } \right) = \;\cos \;\beta ,\;{D_{ - {\omega \over q},{1 \over q}}}{\psi ^{\left( 1 \right)}}\left( {{\omega _0},\;\lambda } \right) = \;\sin \;\beta , \cr & {\theta ^{\left( 1 \right)}}\left( {{\omega _0},\;\lambda } \right) = \;\sin \;\beta ,\;{D_{ - {\omega \over q},{1 \over q}}}{\theta ^{\left( 1 \right)}}\left( {{\omega _0},\;\lambda } \right) = - \;\cos \;\beta , \cr} and θd, λ=ηθd+, λ,Dωq,1qθd, λ=1ηDωq,1qθd+, λ,ψd, λ=ηψd+, λ,Dωq,1qψd, λ=1ηDωq,1qψd+, λ. \matrix{ {\theta \left( {d - ,\;\lambda } \right)} \hfill & = \hfill & {\eta \theta \left( {d + ,\;\lambda } \right),} \hfill \cr {{D_{ - {\omega \over q},{1 \over q}}}\theta \left( {d - ,\;\lambda } \right)} \hfill & = \hfill & {{1 \over \eta }{D_{ - {\omega \over q},{1 \over q}}}\theta \left( {d + ,\;\lambda } \right),} \hfill \cr {\psi \left( {d - ,\;\lambda } \right)} \hfill & = \hfill & {\eta \psi \left( {d + ,\;\lambda } \right),} \hfill \cr {{D_{ - {\omega \over q},{1 \over q}}}\psi \left( {d - ,\;\lambda } \right)} \hfill & = \hfill & {{1 \over \eta }{D_{ - {\omega \over q},{1 \over q}}}\psi \left( {d + ,\;\lambda } \right).} \hfill \cr }

Then the solution of Eq. (3.1) be represented ψζ, λ+𝓁λ, 1qnθζ, λ \psi \left( {\zeta ,\;\lambda } \right) + {\ell} \left( {\lambda ,\;{1 \over {{q^n}}}} \right)\theta \left( {\zeta ,\;\lambda } \right) which satisfies the boundary condition Dωq,1qψ21qn, λ+𝓁λ, 1qnDωq,1qθ21qn, λ sin γ+ψ21qn, λ+𝓁λ, 1qnθ21qn, λ cos γ=0. \matrix{ {\left( {{D_{ - {\omega \over q},{1 \over q}}}{\psi ^{\left( 2 \right)}}\left( {{1 \over {{q^n}}},\;\lambda } \right)\; + \;{\ell}\left( {\lambda ,\;{1 \over {{q^n}}}} \right){D_{ - {\omega \over q},{1 \over q}}}{\theta ^{\left( 2 \right)}}\left( {{1 \over {{q^n}}},\;\lambda } \right)} \right)\;\sin \;\gamma } \hfill \cr {\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \;\left( {{\psi ^{\left( 2 \right)}}\left( {{1 \over {{q^n}}},\;\lambda } \right) + {\ell} \left( {\lambda ,\;{1 \over {{q^n}}}} \right){\theta ^{\left( 2 \right)}}\left( {{1 \over {{q^n}}},\;\lambda } \right)} \right)\;\cos \;\gamma = 0.} \hfill \cr } Hence 𝓁λ, 1qn=ψ21qn,λ cot γ+Dωq,1qψ21qn,λθ21qn,λ cot γ+Dωq,1qθψ21qn,λ. {\ell} \left( {\lambda ,\;{1 \over {{q^n}}}} \right) = - {{{\psi ^{\left( 2 \right)}}\left( {{1 \over {{q^n}}},\lambda } \right){\rm{\;cot\;}}\gamma + {D_{ - {\omega \over q},{1 \over q}}}{\psi ^{\left( 2 \right)}}\left( {{1 \over {{q^n}}},\lambda } \right)} \over {\theta \left( 2 \right)\left( {{1 \over {{q^n}}},\lambda } \right){\rm{\;cot\;}}\gamma + {D_{ - {\omega \over q},{1 \over q}}}\theta {\psi ^{\left( 2 \right)}}\left( {{1 \over {{q^n}}},\lambda } \right)}}.

Lemma 3.1.

Let Z1qnζ, λ=ψζ, λ+𝓁λ, 1qnθζ, λ, {Z_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\lambda } \right) = \psi \left( {\zeta ,\;\lambda } \right) + {\ell} \left( {\lambda ,\;{1 \over {{q^n}}}} \right)\theta \left( {\zeta ,\;\lambda } \right), where Z1qnHn {Z_{{1 \over {{q^n}}}}} \in {H_n} and 1qn>d {1 \over {{q^n}}} > d , n ∈ ℕ. Then, for each nonreal λ, the following relations hold: Z1qnζ, λZζ, λ , n,ω0dZ1qnζ, λ2dω,qζ +d1qnZ1qnζ, λ2dω,qζ ω0dZζ, λ2dω,qζ +dζ, λ2dω,qζ , n. \matrix{ {\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{Z_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\lambda } \right) \to Z\left( {\zeta ,\;\lambda } \right)\;,\;n \to \infty ,} \hfill \cr {\int_{{\omega _0}}^d {{{\left| {{Z_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } + \int_d^{{1 \over {{q^n}}}} {{{\left| {{Z_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } } \hfill \cr {\;\;\;\;\;\;\;\;\;\;\; \to \int_{{\omega _0}}^d {{{\left| {Z\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } + \int_d^\infty {{{\left| {\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } ,\;\;\;\;n \to \infty .} \hfill \cr }

Proof

It is immediate that Z1qnζ, λ=Zζ, λ+𝓁λ, 1qnmλθζ, λ {Z_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\lambda } \right) = Z\left( {\zeta ,\;\lambda } \right) + \left[ {\ell \left( {\lambda ,\;{1 \over {{q^n}}}} \right) - m\left( \lambda \right)} \right]\theta \left( {\zeta ,\;\lambda } \right) where Z(·, λ) ∈ H and m(λ) is the Titchmarsh–Weyl function. 𝓁λ, 1qn \ell \left( {\lambda ,\;{1 \over {{q^n}}}} \right) varies on a circle with a finite radius r1qn {r_{{1 \over {{q^n}}}}} in the plane. In the limit-circle case, 𝓁λ, 1qnmλn \ell \left( {\lambda ,\;{1 \over {{q^n}}}} \right) \to m\left( \lambda \right)\left( {n \to \infty } \right) ; therefore Z1qnζ, λZζ, λ n. {Z_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\lambda } \right) \to Z\left( {\zeta ,\;\lambda } \right)\;\;\;\;\left( {n \to \infty } \right).

Hence ω0dZ11qnζ, λ2dω,qζ +d1qnZ21qnζ, λ2dω,qζ ω0dZ1ζ, λ2dω,qζ +dZ2ζ, λ2dω,qζ n , \matrix{ {\int_{{\omega _0}}^d {{{\left| {{Z_{{{\left( 1 \right)1} \over {{q^n}}}}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } + \int_d^{{1 \over {{q^n}}}} {{{\left| {{Z_{{{\left( 2 \right)1} \over {{q^n}}}}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } } \hfill \cr {\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \to \int_{{\omega _0}}^d {{{\left| {{Z^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } + \int_d^\infty {{{\left| {{Z^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta \;\left( {n \to \infty } \right)} ,} \hfill \cr } due to Z(·, λ) ∈ H. In the limit-point case, we find 𝓁λ, 1qnmλr1qn=2 Im λω0dθ1ζ, λ2dω,qζ +d1qnθ2ζ, λ2dω,qζ 1, \matrix{ {\left| {\ell \left( {\lambda ,\;{1 \over {{q^n}}}} \right) - m\left( \lambda \right)} \right| \le {r_{{1 \over {{q^n}}}}}} \hfill \cr {\;\;\;\;\;\;\;\;\;\;\;\;\;\; = {{\left( {2\;{\mathop{\rm Im}\nolimits} \;\;\lambda \left[ {\int_{{\omega _0}}^d {{{\left| {{\theta ^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } + \int_d^{{1 \over {{q^n}}}} {{{\left| {{\theta ^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } } \right]} \right)}^{ - 1}},} \hfill \cr } where Im λ ≠ 0. As r1qn0 {r_{{1 \over {{q^n}}}}} \to 0 , Z1qnζ, λZζ, λn {Z_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\lambda } \right) \to Z\left( {\zeta ,\;\lambda } \right)\;\left( {n \to \infty } \right) . Moreover, we have ω0d|{(λ, 1qn)-m(λ)}θ(1)(ζ, λ)|2dω,qζ+d1qn|{𝓁(λ, 1qn)-m(λ)}θ(2)(ζ, λ)|2dω,qζ=|𝓁(λ, 1qn)-m(λ)|2(ω0d|θ(1)(ζ, λ)|2dω,qζ+d1qn|θ(2)(ζ, λ)|2dω,qζ)(4(Im λ)2[ω0d|θ(1)(ζ, λ)|2dω,qζ+d1qn|θ(2)(ζ, λ)|2dω,qζ])-1, \matrix{ {\int_{{\omega _0}}^d {{{\left| {\left\{ {\ell \left( {\lambda ,\;{1 \over {{q^n}}}} \right) - m\left( \lambda \right)} \right\}{\theta ^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } } \hfill \cr {\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \;\int_d^{{1 \over {{q^n}}}} {{{\left| {\left\{ {\ell\left( {\lambda ,\;{1 \over {{q^n}}}} \right) - m\left( \lambda \right)} \right\}{\theta ^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } } \hfill \cr {\;\; = \;{{\left| {\ell \left( {\lambda ,\;{1 \over {{q^n}}}} \right) - m\left( \lambda \right)} \right|}^2}\left( {\int_{{\omega _0}}^d {{{\left| {{\theta ^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } + \int_d^{{1 \over {{q^n}}}} {{{\left| {{\theta ^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } } \right)} \hfill \cr {\;\;\;\;\;\;\;\;\;\; \le {{\left( {4{{({\mathop{\rm Im}\nolimits} \;\;\lambda )}^2}\left[ {\int_{{\omega _0}}^d {{{\left| {{\theta ^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } + \int_d^{{1 \over {{q^n}}}} {{{\left| {{\theta ^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right)} \right|}^2}{d_{\omega ,q}}\zeta } } \right]} \right)}^{ - 1}},} \hfill \cr } which implies that ω0d|Z(1)1qn(ζ, λ)|2dω,qζ+d1qn|Z(2)1qn(ζ, λ)|2dω,qζω0d|Z(1)(ζ, λ)|2dω,qζ+d|Z(2)(ζ, λ)|2dω,qζ.  \begin{array}{*{20}c} {\int_{\omega _0 }^d {\left| {Z_{_{\frac{1} {{q^n }}} }^{\left( 1 \right)} \left( {\zeta ,\lambda } \right)} \right|^2 d_{\omega ,q} \zeta } + \int_d^{\frac{1} {{q^n }}} {\left| {Z_{\frac{1} {{q^n }}}^{\left( 2 \right)} \left( {\zeta ,\lambda } \right)} \right|^2 d_{\omega ,q} \zeta } } \hfill \\ {\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \to \int_{\omega _0 }^d {\left| {Z^{\left( 1 \right)} \left( {\zeta ,\lambda } \right)} \right|^2 d_{\omega ,q} \zeta } + \int_d^\infty {\left| {Z^{\left( 2 \right)} \left( {\zeta ,\lambda } \right)} \right|^2 d_{\omega ,q} \zeta } .} \hfill \\ \end{array}

Let fHn1qn>d, n f \in H_n \left( {\frac{1}{{q^n }} > d,n \in {\mathbb N}} \right) . Define G1qnζ, ς, λ=Z1qnζ, λθζ, λ, ςζ,θζ, λZ1qnς, λ, ς>ζ, R1qnfζ, λ=ω0dG1qnζ, ς, λf1ςdω,qς+d1qnG1qnζ, ς, λf2ςdω,qς, λ. \eqalign{ & {G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma ,\;\lambda } \right) = \left\{ {\matrix{ {{Z_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\lambda } \right)\theta \left( {\zeta ,\;\lambda } \right),\;} \hfill & {\varsigma \le \zeta ,} \hfill \cr {\theta \left( {\zeta ,\;\lambda } \right){Z_{{1 \over {{q^n}}}}}\left( {\varsigma ,\;\lambda } \right),\;} \hfill & {\varsigma > \zeta ,} \hfill \cr } } \right. \cr & \matrix{ {\left( {{R_{{1 \over {{q^n}}}}}f} \right)\left( {\zeta ,\;\lambda } \right) = \int_{{\omega _0}}^d {{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma ,\;\lambda } \right){f^{\left( 1 \right)}}\left( \varsigma \right){d_{\omega ,q}}\varsigma } } \hfill \cr {\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \int_d^{{1 \over {{q^n}}}} {{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma ,\;\lambda } \right){f^{\left( 2 \right)}}\left( \varsigma \right){d_{\omega ,q}}\varsigma ,\;\lambda \in {\mathbb C}} .} \hfill \cr } \cr}

Without loss of generality, we can assume that λ = 0 is not an eigenvalue of the BVP (3.1)–(3.5). Now let us prove that the resolvent operator is compact.

Theorem 3.2.

G1qnζ, ςλ=0(1qn>d, n) {G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma } \right)\left( {\lambda = 0} \right)\;({1 \over {{q^n}}} > d,\;n \in {\mathbb N}) defined as (3.6) is a ω, q-Hilbert–Schmidt kernel, i.e., ω0dω0d|G1qnζ, ς|2dω,qζdω,qς<+,d1qnd1qn|G1qnζ, ς|2dω,qζdω,qς<+. \eqalign{ & \mathop \smallint \nolimits_{{\omega _0}}^d \mathop \smallint \nolimits_{{\omega _0}}^d |{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma } \right){|^2}{d_{\omega ,q}}\zeta {d_{\omega ,q}}\varsigma< + \infty , \cr & \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} |{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma } \right){|^2}{d_{\omega ,q}}\zeta {d_{\omega ,q}}\varsigma< + \infty . \cr}

Proof

By (3.6), it is obvious that ω0ddω,qζω0d|G1qnζ, ς|2dω,qς<+,d1qndω,qζd1qn|G1qnζ, ς|2dω,qς<+, \eqalign{ & \mathop \smallint \nolimits_{{\omega _0}}^d {d_{\omega ,q}}\zeta \mathop \smallint \nolimits_{{\omega _0}}^d |{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma } \right){|^2}{d_{\omega ,q}}\varsigma< + \infty , \cr & \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} {d_{\omega ,q}}\zeta \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} |{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma } \right){|^2}{d_{\omega ,q}}\varsigma< + \infty , \cr} due to Z1qn {Z_{{1 \over {{q^n}}}}} , (·, λ), θ (·, λ) ∈ Hn (1qn>d, n) (\frac{1}{{q^n }} > d,n \in {\mathbb N}) . Hence ω0dω0d|G1qnζ, ς|2dω,qζdω,qς<+,d1qnd1qn|G1qnζ, ς|2dω,qζdω,qς<+. \eqalign{ & \mathop \smallint \nolimits_{{\omega _0}}^d \mathop \smallint \nolimits_{{\omega _0}}^d |{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma } \right){|^2}{d_{\omega ,q}}\zeta {d_\omega }_{,q}\varsigma< + \infty , \cr & \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} |{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma } \right){|^2}{d_{\omega ,q}}\zeta {d_{\omega ,q}}\varsigma< + \infty . \cr}

Theorem 3.3 ([20]).

Let A {ti} = {xi}, i ∈ ℕ, where xi=k=1ηiktk, i, k. {x_i} = \mathop \sum \nolimits_{k = 1}^\infty {\eta _{ik}}{t_k},\;\,\,i,\;k \in {\rm{\mathbb N}}.

If i,k=1|ηik|2<+, \sum\limits_{i,k = 1}^\infty {|{\eta _{ik}}{|^2}< + \infty } , then the operator A is compact in l2.

Theorem 3.4.

Let 𝒯 be the ω, q-integral operator 𝒯: Hn → Hn ( 1qn>d,n \frac{1}{{q^n }} > d,\,n \in {\mathbb N} ), Tfζ=ω0dG1qnζ, ςf1ςdω,qς, ζω0, d ,d1qnG1qnζ, ςf2ςdω,qς, ζd, 1qn, \left( {{\cal T}f} \right)\left( \zeta \right) = \left\{ {\matrix{ {\mathop \smallint \nolimits_{{\omega _0}}^d {G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma } \right){f^{\left( 1 \right)}}\left( \varsigma \right){d_{\omega ,q}}\varsigma ,\;\zeta \in \left[ {{\omega _0},\;d} \right)\;,} \hfill \cr {\mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} {G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma } \right){f^{\left( 2 \right)}}\left( \varsigma \right){d_{\omega ,q}}\varsigma ,\;\zeta \in \left( {d,\;{1 \over {{q^n}}}} \right],} \hfill \cr } } \right. where fζ=f1ζ , ζω0, d ,f2ζ , ζd, 1qn. f\left( \zeta \right) = \left\{ {\matrix{ {{f^{\left( 1 \right)}}\left( \zeta \right)\;,\;\zeta \in \left[ {{\omega _0},\;d} \right)\;,} \hfill \cr {{f^{\left( 2 \right)}}\left( \zeta \right)\;,\;\zeta \in \left( {d,\;{1 \over {{q^n}}}} \right].} \hfill \cr } } \right.

Then 𝒯 is a compact self-adjoint operator in space Hn.

Proof

Let φi:=φiζ=φi1ζ , ζω0, d ,φi2ζ ,ζd, 1qn,(i, n, 1qn>d) \varphi _i : = \varphi _i \left( \zeta \right) = \left\{ {\begin{array}{*{20}c} {\varphi _i^{\left( 1 \right)} \left( \zeta \right),} \hfill & {\zeta \in \left[ {\omega _0 ,d} \right),} \hfill \\ {\varphi _i^{\left( 2 \right)} \left( \zeta \right),} \hfill & {\zeta \in \left( {d,\frac{1} {{q^n }}} \right],} \hfill \\ \end{array} } \right.\,\,\,\,\,(i,n \in {\mathbb N},\frac{1} {{q^n }} > d) be a complete, orthonormal basis of Hn. Let i, k, n ∈ ℕ, 1qn>d {1 \over {{q^n}}} > d . Write ti=f, φin=ω0df(1) (ζ)φi(1)(ζ)¯dω,qζ+d1qnf(2)(ζ)φi(2)(ζ)¯dω,qζ,xi=g,φin=ω0dg(1)(ζ)φi(1)(ζ)¯dω,qζ+d1qng(2)(ζ)φi(2)(ζ)¯dω,qζ,ηik=ω0dω0dG1qn(ζ, ς)φi(1)(ζ)φk(1)(ς)¯dω,qζdω,qς+d1qnd1qnG1qn(ζ, ς)φi(2)(ζ)φk(2)(ς)¯dω,qζdω,qς. \begin{gathered} t_i = \left\langle {f,\varphi _i } \right\rangle _n = \mathop \smallint \nolimits_{\omega _0 }^d f^{\left( 1 \right)} \left( \zeta \right)\overline {\varphi _i^{\left( 1 \right)} \left( \zeta \right)} d_{\omega ,q} \zeta \hfill \\ \,\,\,\,\,\,\,\, + \mathop \smallint \nolimits_d^{\frac{1} {{q^n }}} f^{\left( 2 \right)} \left( \zeta \right)\overline {\varphi _i^{\left( 2 \right)} \left( \zeta \right)} d_{\omega ,q} \zeta , \hfill \\ x_i = \langle g,\varphi _i \rangle _n = \mathop \smallint \nolimits_{\omega _0 }^d g^{\left( 1 \right)} \left( \zeta \right)\overline {\varphi _i^{\left( 1 \right)} \left( \zeta \right)} d_{\omega ,q} \zeta \hfill \\ \,\,\,\,\,\,\, + \mathop \smallint \nolimits_d^{\frac{1} {{q^n }}} g^{\left( 2 \right)} \left( \zeta \right)\overline {\varphi _i^{\left( 2 \right)} \left( \zeta \right)} d_{\omega ,q} \zeta , \hfill \\ \eta _{ik} = \mathop \smallint \nolimits_{\omega _0 }^d \mathop \smallint \nolimits_{\omega _0 }^d G_{\frac{1} {{q^n }}} \left( {\zeta ,\varsigma } \right)\varphi _i^{\left( 1 \right)} \left( \zeta \right)\overline {\varphi _k^{\left( 1 \right)} \left( \varsigma \right)} d_{\omega ,q} \zeta d_{\omega ,q} \varsigma \hfill \\ \,\,\,\,\,\,\, + \mathop \smallint \nolimits_d^{\frac{1} {{q^n }}} \mathop \smallint \nolimits_d^{\frac{1} {{q^n }}} G_{\frac{1} {{q^n }}} \left( {\zeta ,\varsigma } \right)\varphi _i^{\left( 2 \right)} \left( \zeta \right)\overline {\varphi _k^{\left( 2 \right)} \left( \varsigma \right)} d_{\omega ,q} \zeta d_{\omega ,q} \varsigma . \hfill \\ \end{gathered} Hn is mapped isometrically on to l2. By this mapping, 𝒯 transforms into the operator A defined by (3.8) in l2 and (3.7) is translated into (3.9). By Theorems 3.2 and 3.3, we see that A and 𝒯 are compact operators.

Let h, gHn and 1qn>d {1 \over {{q^n}}} > d , n ∈ ℕ. Then we have 𝒯h,gn=dω0(𝒯h(1))(ζ)g(1)(ζ¯)dω,qζ+1qnd(𝒯h(2))(ζ)g(2)(ζ¯)dω,qζ=dω0dω0G1qn(ζ, ς)h(1)(ς)dω,qςg(1)(ζ)¯dω,qζ+1qnd1qndG1qn(ζ, ς)h(2)(ς)dω,qςg(2)(ζ)¯dω,qζ=dω0h(1)(ς)(dω0G1qn(ς, ζ)g(1)(ζ)¯dω,qζ)dω,qς+1qndh(2)(ς)(1qndG1qn(ς, ζ)g(2)(ζ)¯dω,qζ)dω,qς=h, Tgn, \eqalign{ & \matrix{ {{{\left\langle {{\cal T}h,g} \right\rangle }_n}} \hfill & { = \mathop \smallint \nolimits_{{\omega _0}}^d ({\cal T}{h^{\left( 1 \right)}})\left( \zeta \right)\overline {{g^{\left( 1 \right)}}(\zeta } ){d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} ({\cal T}{h^{\left( 2 \right)}})\left( \zeta \right)\overline {{g^{\left( 2 \right)}}(\zeta } ){d_{\omega ,q}}\zeta } \hfill \cr {} \hfill & { = \mathop \smallint \nolimits_{{\omega _0}}^d \mathop \smallint \nolimits_{{\omega _0}}^d {G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma } \right){h^{\left( 1 \right)}}\left( \varsigma \right){d_{\omega ,q}}\varsigma \overline {{g^{\left( 1 \right)}}\left( \zeta \right)} {d_{\omega ,q}}\zeta } \hfill \cr {} \hfill & {\,\,\, + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} {G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma } \right){h^{\left( 2 \right)}}\left( \varsigma \right){d_{\omega ,q}}\varsigma \overline {{g^{\left( 2 \right)}}\left( \zeta \right)} {d_{\omega ,q}}\zeta } \hfill \cr {} \hfill & { = \mathop \smallint \nolimits_{{\omega _0}}^d {h^{\left( 1 \right)}}\left( \varsigma \right)\left( {\mathop \smallint \nolimits_{{\omega _0}}^d {G_{{1 \over {{q^n}}}}}\left( {\varsigma ,\;\zeta } \right)\overline {{g^{\left( 1 \right)}}\left( \zeta \right)} {d_{\omega ,q}}\zeta } \right){d_{\omega ,q}}\varsigma } \hfill \cr {} \hfill & {\,\,\, + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} {h^{\left( 2 \right)}}\left( \varsigma \right)\left( {\mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} {G_{{1 \over {{q^n}}}}}\left( {\varsigma ,\;\zeta } \right)\overline {{g^{\left( 2 \right)}}\left( \zeta \right)} {d_{\omega ,q}}\zeta } \right){d_{\omega ,q}}\varsigma } \hfill \cr {} \hfill & { = {{\left\langle {h,\;Tg} \right\rangle }_n},} \hfill \cr } \cr & \,\,\,\,\,\,\,\,\,\,\,\,\, \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \cr & \,\,\,\,\,\,\,\,\,\,\,\, \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \cr & \,\,\,\,\,\,\,\,\,\, \cr} since G1qnζ, γ {G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\gamma } \right) is a symmetric function.

From Theorem 3.4, we conclude that 𝒯 has a discrete spectrum. Let λm,1qn {\lambda _{m,{1 \over {{q^n}}}}} and θm,1qnζ:=θm,1qn1ζ, λm,1qn , ζω0, d ,θm,1qn2ζ, λm,1qn , ζd, 1qn,(m, n, 1qn>d) \theta _{m,\frac{1} {{q^n }}} \left( \zeta \right): = \left\{ {\begin{array}{*{20}c} {\theta _{m,\frac{1} {{q^n }}}^{\left( 1 \right)} \left( {\zeta ,\lambda _{m,\frac{1} {{q^n }}} } \right),\,\,\,\,\,\zeta \in \left[ {\omega _0 ,d} \right),} \hfill \\ {\theta _{m,\frac{1} {{q^n }}}^{\left( 2 \right)} \left( {\zeta ,\lambda _{m,\frac{1} {{q^n }}} } \right),\,\,\,\,\zeta \in \left( {d,\frac{1} {{q^n }}} \right],} \hfill \\ \end{array} } \right.\,\,\,\,\,\,\,(m,n \in \mathbb{N},\,\,\frac{1} {{q^n }} > d) be the eigenvalues and eigenfunctions of the BVP (3.1)–(3.5) and αm,1qn2=ω0dθm,1qn12ζdω,qς+d1qnθm,1qn22ζdω,qς. \alpha _{m,{1 \over {{q^n}}}}^2 = \mathop \smallint \nolimits_{{\omega _0}}^d \theta _{m,{1 \over {{q^n}}}}^{\left( 1 \right)2}\left( \zeta \right){d_{\omega ,q}}\varsigma + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} \theta _{m,{1 \over {{q^n}}}}^{\left( 2 \right)2}\left( \zeta \right){d_{\omega ,q}}\varsigma .

By Theorem 3.4 and the Hilbert–Schmidt theorem, we infer that ω0d|f1ζ|2dω,qζ+d1qn|f2ζ|2dω,qζ=m=11αm,1qn2ω0df1ζϕm,1qn1ζdω,qζ+d1qnf2ζϕm,1qn2ζdω,qζ2. \eqalign{ & \mathop \smallint \nolimits_{{\omega _0}}^d |{f^{\left( 1 \right)}}\left( \zeta \right){|^2}{d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} |{f^{\left( 2 \right)}}\left( \zeta \right){|^2}{d_{\omega ,q}}\zeta \cr & = \mathop \sum \nolimits_{m = 1}^\infty {1 \over {\alpha _{m,{1 \over {{q^n}}}}^2}}{\left| {\mathop \smallint \nolimits_{{\omega _0}}^d {f^{\left( 1 \right)}}\left( \zeta \right)\phi _{m,{1 \over {{q^n}}}}^{\left( 1 \right)}\left( \zeta \right){d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} {f^{\left( 2 \right)}}\left( \zeta \right)\phi _{m,{1 \over {{q^n}}}}^{\left( 2 \right)}\left( \zeta \right){d_{\omega ,q}}\zeta } \right|^2}. \cr}

Define ϱ1qnλ=λ<λm,1n<01αm,1qn2 ,for λ0,0λm,1qn<λ1αm,1qn2,for λ>0. {\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right) = \left\{ {\matrix{ { - \sum\limits_{\lambda< {\lambda _{m,{1 \over n}}}< 0} {{1 \over {\alpha _{m,{1 \over {{q^n}}}}^2}}\;,} } \hfill & {{\rm{for}}\;\lambda \le 0,} \hfill \cr {\sum\limits_{0 \le {\lambda _{m,{1 \over {{q^n}}}}}< \lambda } {{1 \over {\alpha _{m,{1 \over {{q^n}}}}^2}},} } \hfill & {{\rm{for}}\;\lambda > 0.} \hfill \cr } } \right. Then, (3.10) can be written as ω0df1ζ2dω,qζ+d1qnf2ζ2dω,qζ=|Fλ|2dϱ1qnλ, \mathop \smallint \nolimits_{{\omega _0}}^d {\left| {{f^{\left( 1 \right)}}\left( \zeta \right)} \right|^2}{d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} {\left| {{f^{\left( 2 \right)}}\left( \zeta \right)} \right|^2}{d_{\omega ,q}}\zeta = \mathop \smallint \nolimits_{ - \infty }^\infty |F\left( \lambda \right){|^2}d{\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right), where Fλ=ω0df1ζϕm,1qn1ζdω,qζ+d1qnf2ζϕm,1qn2ζdω,qζ. F\left( \lambda \right) = \mathop \smallint \nolimits_{{\omega _0}}^d {f^{\left( 1 \right)}}\left( \zeta \right)\phi _{m,{1 \over {{q^n}}}}^{\left( 1 \right)}\left( \zeta \right){d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} {f^{\left( 2 \right)}}\left( \zeta \right)\phi _{m,{1 \over {{q^n}}}}^{\left( 2 \right)}\left( \zeta \right){d_{\omega ,q}}\zeta .

Lemma 3.5.

For any positive S, there is a positive number B = B (S) not depending on n so that -SSϱ1qnλ=Sλm,1qn<S1αm,1qn2=ϱ1qnSϱ1qnS<B. - \mathop \lor \limits_{{\text{ - }}S}^S \varrho _{\frac{1} {{q^n }}} \left( \lambda \right) = \sum\limits_{ - S \leqslant \lambda _{m,\frac{1} {{q^n }}}< S} {\frac{1} {{\alpha _{m,\frac{1} {{q^n }}}^2 }} = \varrho _{\frac{1} {{q^n }}} \left( S \right) - \varrho _{\frac{1} {{q^n }}} \left( { - S} \right)< B.}

Proof

Let sin β ≠ 0. Since θ(ζ, λ) is continuous in domain −SλS, ω0, d(d, 1qn] \left[ {{\omega _0},\;d} \right) \cup (d,\;{1 \over {{q^n}}}] , and the condition θ(1)(ω0, λ) = sin β, there exists a positive number h such that for |λ| < S, 1h2ω0ω0+hθ1ζ, λdω,qζ2>12sin2β. {1 \over {{h^2}}}{\left( {\mathop \smallint \nolimits_{{\omega _0}}^{{\omega _0} + h} {\theta ^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right){d_{\omega ,q}}\zeta } \right)^2} > {1 \over 2}{\rm{si}}{{\rm{n}}^2}\beta .

Let fhζ=1h,ω0ζω0+h,0,ζ>ω0+h. {f_h}\left( \zeta \right) = \left\{ {\matrix{ {{1 \over h},} \hfill & {{\omega _0} \le \zeta \le {\omega _0} + h,} \hfill \cr {0,} \hfill & {\zeta > {\omega _0} + h.} \hfill \cr } } \right.

From (3.12), we find ω0ω0+hfh2ζdω,qζ=1h=1hω0ω0+hθ1ζ, λdω,qζ2dϱ1qnλSS1hω0ω0+hθ1ζ, λdω,qζ2dϱαλ>12sin2βϱ1qnSϱ1qnS. \matrix{ {\mathop \smallint \nolimits_{{\omega _0}}^{{\omega _0} + h} f_h^2\left( \zeta \right){d_{\omega ,q}}\zeta } \hfill & { = {1 \over h} = \mathop \smallint \nolimits_{ - \infty }^\infty {{\left( {{1 \over h}\mathop \smallint \nolimits_{{\omega _0}}^{{\omega _0} + h} {\theta ^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right){d_{\omega ,q}}\zeta } \right)}^2}d{\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right)} \hfill \cr {} \hfill & { \ge \mathop \smallint \nolimits_{ - S}^S {{\left( {{1 \over h}\mathop \smallint \nolimits_{{\omega _0}}^{{\omega _0} + h} {\theta ^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right){d_{\omega ,q}}\zeta } \right)}^2}d{\varrho _\alpha }\left( \lambda \right)} \hfill \cr {} \hfill & { > {1 \over 2}{\rm{si}}{{\rm{n}}^2}\beta \left\{ {{\varrho _{{1 \over {{q^n}}}}}\left( S \right) - {\varrho _{{1 \over {{q^n}}}}}\left( { - S} \right)} \right\}.} \hfill \cr }

If sin β = 0, then we define fh(ζ) as fhζ=1h2, ω0ζω0+h,0,ζ>ω0+h.   \eqalign{ & {f_h}\left( \zeta \right) = \left\{ {\matrix{ {{1 \over {{h^2}}},} \hfill & {\;{\omega _0} \le \zeta \le {\omega _0} + h,} \hfill \cr {0,} \hfill & {\zeta > {\omega _0} + h.} \hfill \cr } } \right. \cr & \matrix{ {} \hfill \cr \; \hfill \cr } \cr}

This proves the lemma.

Now, we will give an expansion into a Fourier series of resolvent. By ω, q-integration by parts, we obtain dω0[1qD-ωq,1qDω,qy(1) (ζ, λ)-v(ζ)y(1)(ζ, λ)]θm,1qn(1)(ζ)dω,qζ+1qnd[1qD-ωq,1qDω,qy(2)(ζ, λ)-v(ζ)y(2)(ζ, λ)]θm,1qn (2)(ζ)dω,qζ=dω0[1qD-ωq,1qDω,qϕm,1qn(1)(ζ)-v(ζ)θm,1qn(1)(ζ)]y(1)(ζ, λ)dω,qζ+1qn d[1qD-ωq,1q Dω,qϕm,1qn (2) (ζ)-v(ζ)θm,1qn (2) (ζ) ]y(2)(ζ, λ)dω,qζ=-λm,1qn dω0y(1)(ζ, λ)θm,1qn (1)(ζ)dω,qζ-λm,1qn 1qn dy(2)(ζ, λ)θm,1qn (2)(ζ)dω,qζ=-λm,1qn φm(λ), \eqalign{ & \mathop \smallint \nolimits_{{\omega _0}}^d \left[ {{1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}{y^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right) - v\left( \zeta \right){y^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right)} \right]\theta _{m,{1 \over {{q^n}}}}^{\left( 1 \right)}\left( \zeta \right){d_{\omega ,q}}\zeta \cr & \,\,\,\, + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} \left[ {{1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}{y^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right) - v\left( \zeta \right){y^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right)} \right]\theta _{m,{1 \over {{q^n}}}}^{\left( 2 \right)}\left( \zeta \right){d_{\omega ,q}}\zeta \cr & = \mathop \smallint \nolimits_{{\omega _0}}^d \left[ {{1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}\phi _{m,{1 \over {{q^n}}}}^{\left( 1 \right)}\left( \zeta \right) - v\left( \zeta \right)\theta _{m,{1 \over {{q^n}}}}^{\left( 1 \right)}\left( \zeta \right)} \right]{y^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right){d_{\omega ,q}}\zeta \cr & \,\,\,\, + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} \left[ {{1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}\phi _{m,{1 \over {{q^n}}}}^{\left( 2 \right)}\left( \zeta \right) - v\left( \zeta \right)\theta _{m,{1 \over {{q^n}}}}^{\left( 2 \right)}\left( \zeta \right)} \right]{y^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right){d_{\omega ,q}}\zeta \cr & = - {\lambda _{m,{1 \over {{q^n}}}}}\mathop \smallint \nolimits_{{\omega _0}}^d {y^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right)\theta _{m,{1 \over {{q^n}}}}^{\left( 1 \right)}\left( \zeta \right){d_{\omega ,q}}\zeta - {\lambda _{m,{1 \over {{q^n}}}}}\mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} {y^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right)\theta _{m,{1 \over {{q^n}}}}^{\left( 2 \right)}\left( \zeta \right){d_{\omega ,q}}\zeta \cr & = - {\lambda _{m,{1 \over {{q^n}}}}}{\varphi _m}\left( \lambda \right), \cr} where m ∈ ℕ. Let yζ, λ=m=1φmλψm,1qnζ,am=ω0dfζψm,1qn1ζdω,qζ+d1qnfζψm,1qn2ζdω,qζ, \eqalign{ & y\left( {\zeta ,\;\lambda } \right) = \sum\limits_{m = 1}^\infty {{\varphi _m}\left( \lambda \right){\psi _{m,{1 \over {{q^n}}}}}\left( \zeta \right),} \cr & {a_m} = \mathop \smallint \nolimits_{{\omega _0}}^d f\left( \zeta \right)\psi _{m,{1 \over {{q^n}}}}^{\left( 1 \right)}\left( \zeta \right){d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} f\left( \zeta \right)\psi _{m,{1 \over {{q^n}}}}^{\left( 2 \right)}\left( \zeta \right){d_{\omega ,q}}\zeta , \cr} where m ∈ ℕ. Since y(ζ, λ) satisfies the equation 1qDωq,1qDω,qyζ, λ+vζλyζ, λ=fζ, - {1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}y\left( {\zeta ,\;\lambda } \right) + \left( {v\left( \zeta \right) - \lambda } \right)y\left( {\zeta ,\;\lambda } \right) = f\left( \zeta \right), we find am=ω0d1qDωq,1qDω,qy1ζ, λ+vζλy1ζ, λθm,1qn1ζdω,qζ+d1qn1qDωq,1qDω,qy2ζ, λ+vζλy2ζ, λθm,1qn2ζdω,qζ=λm,1qnφmλλφmλ,   m,n,1qn>d. \eqalign{ & a_m = \mathop \smallint \nolimits_{\omega _0 }^d \left[ { - \frac{1} {q}D_{ - \frac{\omega } {q},\frac{1} {q}} D_{\omega ,q} y^{\left( 1 \right)} \left( {\zeta ,\lambda } \right) + \left( {v\left( \zeta \right) - \lambda } \right)y^{\left( 1 \right)} \left( {\zeta ,\lambda } \right)} \right]\theta _{m,\frac{1} {{q^n }}}^{\left( 1 \right)} \left( \zeta \right)d_{\omega ,q} \zeta \cr & \,\,\,\,\,\,\,\,\, + \mathop \smallint \nolimits_d^{\frac{1} {{q^n }}} \left[ { - \frac{1} {q}D_{ - \frac{\omega } {q},\frac{1} {q}} D_{\omega ,q} y^{\left( 2 \right)} \left( {\zeta ,\lambda } \right) + \left( {v\left( \zeta \right) - \lambda } \right)y^{\left( 2 \right)} \left( {\zeta ,\lambda } \right)} \right]\theta _{m,\frac{1} {{q^n }}}^{\left( 2 \right)} \left( \zeta \right)d_{\omega ,q} \zeta \cr & \,\,\,\,\,\,\,\, = \lambda _{m,\frac{1} {{q^n }}} \varphi _m \left( \lambda \right) - \lambda \varphi _m \left( \lambda \right)\,\,{\text{, }}m,n \in {\mathbb N},\frac{1} {{q^n }} > d. \cr}

Thus, we get φmλ=amλm,1qnλ(m, n, 1qn>d), \varphi _m \left( \lambda \right) = \frac{{a_m }} {{\lambda _{m,\frac{1} {{q^n }}} - \lambda }}\,\,\,\,\,\,(m,n \in {\mathbb N},\frac{1} {{q^n }} > d), and yζ, λ=G1qnζ, , λ, f¯n=m=1amθm,1qnζλm,1qnλ. y\left( {\zeta ,\;\lambda } \right) = {\left\langle {{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\; \cdot ,\;\lambda } \right),\;\overline {f\left( \cdot \right)} } \right\rangle _n} = \sum\limits_{m = 1}^\infty {{{{a_m}{\theta _{m,{1 \over {{q^n}}}}}\left( \zeta \right)} \over {{\lambda _{m,{1 \over {{q^n}}}}} - \lambda }}.}

Hence R1qnfζ, z=m=1θm,1qnζαm,1qn2λm,1qnzf, θm,1qnn=θζ,λλzf, θm,1qnndϱ1qnλ. \eqalign{ & \left( {{R_{{1 \over {{q^n}}}}}f} \right)\left( {\zeta ,\;z} \right) = \sum\limits_{m = 1}^\infty {{{{\theta _{m,{1 \over {{q^n}}}}}\left( \zeta \right)} \over {\alpha _{m,{1 \over {{q^n}}}}^2\left( {{\lambda _{m,{1 \over {{q^n}}}}} - z} \right)}}{{\left\langle {f\left( \cdot \right),\;{\theta _{m,{1 \over {{q^n}}}}}\left( \cdot \right)} \right\rangle }_n}} \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop \smallint \nolimits_{ - \infty }^\infty {{\theta \left( {\zeta ,\lambda } \right)} \over {\lambda - z}}\left\{ {{{\left\langle {f\left( \cdot \right),\;{\theta _{m,{1 \over {{q^n}}}}}\left( \cdot \right)} \right\rangle }_n}} \right\}d{\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right). \cr}

Lemma 3.6.

For each nonreal z and fixed ζ, the following relation holds θζ,λzλ2dϱ1qnλ<S. \mathop \smallint \nolimits_{ - \infty }^\infty {\left| {{{\theta \left( {\zeta ,\lambda } \right)} \over {z - \lambda }}} \right|^2}d{\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right)< S.

Proof

Writing fς=θm,1qnςαm,1qn f\left( \varsigma \right) = {{{\theta _{m,{1 \over {{q^n}}}}}\left( \varsigma \right)} \over {{\alpha _{m,{1 \over {{q^n}}}}}}} yields 1αm,1qnG1qnζ, , λ, θm,1qnn=θm,1qnζαm,1qnλm,1qnz, {1 \over {{\alpha _{m,{1 \over {{q^n}}}}}}}{\left\langle {{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\; \cdot ,\;\lambda } \right),\;{\theta _{m,{1 \over {{q^n}}}}}\left( \cdot \right)} \right\rangle _n} = {{{\theta _{m,{1 \over {{q^n}}}}}\left( \zeta \right)} \over {{\alpha _{m,{1 \over {{q^n}}}}}\left( {{\lambda _{m,{1 \over {{q^n}}}}} - z} \right)}}, due to the eigenfunctions θm,1qn(ζ) {\theta _{m,{1 \over {{q_n}}}}}(\zeta ) are orthogonal. Combining (3.15) and (3.10), we see that ω0dG1qnζ, ς, z2dω,qς+d1qnG1qnζ, ς, z2dω,qς=m=1θm,1qnζ2αm,1qn2λm,1qnz2=θζ,λλz2dϱ1qnλ. \eqalign{ & \mathop \smallint \nolimits_{{\omega _0}}^d {\left| {{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma ,\;z} \right)} \right|^2}{d_{\omega ,q}}\varsigma + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} {\left| {{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma ,\;z} \right)} \right|^2}{d_{\omega ,q}}\varsigma \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop \sum \nolimits_{m = 1}^\infty {{{{\left| {{\theta _{m,{1 \over {{q^n}}}}}\left( \zeta \right)} \right|}^2}} \over {\alpha _{m,{1 \over {{q^n}}}}^2{{\left| {{\lambda _{m,{1 \over {{q^n}}}}} - z} \right|}^2}}} = \mathop \smallint \nolimits_{ - \infty }^\infty {\left| {{{\theta \left( {\zeta ,\lambda } \right)} \over {\lambda - z}}} \right|^2}d{\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right). \cr}

By Lemma 3.1, the integral on the left converges and the result is immediate.

It follows from Lemma 8 that the set ϱ1qnλ \left\{ {{\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right)} \right\} is bounded. Using Helly’s theorems ([15]), one can find a sequence {1/qnk} such that ϱ1qnkλ {\varrho _{{1 \over {{q^n}k}}}}\left( \lambda \right) converges to a monotone function ϱ(λ) (as nk → ∞).

Lemma 3.7.

Let z be a nonreal number and ζ be a fixed number. Then we have θζ,λzλ2dϱλS. \mathop \int \nolimits_{ - \infty }^\infty {\left| {{{\theta \left( {\zeta ,\lambda } \right)} \over {z - \lambda }}} \right|^2}d\varrho \left( \lambda \right) \le S.

Proof

For arbitrary η > 0, it follows from (3.14) that ηηϕς,λzλ2dϱ1qnλ<S. \mathop \int \nolimits_{ - \eta }^\eta {\left| {{{\phi \left( {\varsigma ,\lambda } \right)} \over {z - \lambda }}} \right|^2}d{\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right)< S.

Letting η → ∞ and n → ∞, we get the desired result.

Lemma 3.8.

For arbitrary η > 0, we have ηdϱλ|zλ|2<, ηdϱλ|zλ|2<. \mathop \int \nolimits_{ - \infty }^{ - \eta } {{d\varrho \left( \lambda \right)} \over {|z - \lambda {|^2}}}< \infty ,\;\mathop {\,\,\,\,\,\smallint }\nolimits_\eta ^\infty {{d\varrho \left( \lambda \right)} \over {|z - \lambda {|^2}}}< \infty .

Proof

Let sin β ≠ 0. Writing ζ = 0 in (3.16), we obtain dϱλ|zλ|2<. \mathop \int \nolimits_{ - \infty }^\infty {{d\varrho \left( \lambda \right)} \over {|z - \lambda {|^2}}}< \infty .

Let sin β = 0. Then 1αm,1qnDq,ζG1qnζ, , z, θm,1qnn=Dq,ζθm,1qnζαm,1qnλm,1qnz. {1 \over {{\alpha _{m,{1 \over {{q^n}}}}}}}{\left\langle {{D_{q,\zeta }}{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\; \cdot ,\;z} \right),\;{\theta _{m,{1 \over {{q^n}}}}}\left( \cdot \right)} \right\rangle _n} = {{{D_{q,\zeta }}{\theta _{m,{1 \over {{q^n}}}}}\left( \zeta \right)} \over {{\alpha _{m,{1 \over {{q^n}}}}}\left( {{\lambda _{m,{1 \over {{q^n}}}}} - z} \right)}}.

By (3.11), we find ω0dDq,ζG1qnζ, ς, z2dω,qζ+d1qnDq,ζG1qnζ, ς, z2dω,qζ=Dq,ζθζ,λzλ2dϱ1qnλ. \eqalign{ & \mathop \smallint \nolimits_{{\omega _0}}^d {\left| {{D_{q,\zeta }}{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma ,\;z} \right)} \right|^2}{d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} {\left| {{D_{q,\zeta }}{G_{{1 \over {{q^n}}}}}\left( {\zeta ,\;\varsigma ,\;z} \right)} \right|^2}{d_{\omega ,q}}\zeta \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop \smallint \nolimits_{ - \infty }^\infty {\left| {{{{D_{q,\zeta }}\theta \left( {\zeta ,\lambda } \right)} \over {z - \lambda }}} \right|^2}d{\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right). \cr}

Lemma 3.9.

Let Rfζ, z=ω0Gζ, ς, zfςdω,qς, \left( {Rf} \right)\left( {\zeta ,\;z} \right) = \mathop \smallint \nolimits_{{\omega _0}}^\infty G\left( {\zeta ,\;\varsigma ,\;z} \right)f\left( \varsigma \right){d_{\omega ,q}}\varsigma , where fH, and Gζ, ς, z=Zζ, zθς, z, ςζ, ζd, ςd,θζ, zZς, z , ς>ζ, ζd, ςd. G\left( {\zeta ,\;\varsigma ,\;z} \right) = \left\{ {\matrix{ {Z\left( {\zeta ,\;z} \right)\theta \left( {\varsigma ,\;z} \right),} \hfill & {\;\varsigma \le \zeta ,\;\,\,\,\,\zeta \ne d,\;\,\,\,\varsigma \ne d,} \hfill \cr {\theta \left( {\zeta ,\;z} \right)Z\left( {\varsigma ,\;z} \right)\;,} \hfill & {\;\varsigma > \zeta ,\;\,\,\,\,\zeta \ne d,\;\,\,\varsigma \ne d.} \hfill \cr } } \right.

Then, we have ω0d|Rfζ, z|2dω,qζ+d|Rfζ, z|2dω,qζ1v2ω0df1ζ2dω,qζ+df2ζ2dω,qζ, \eqalign{ & \mathop \smallint \nolimits_{{\omega _0}}^d |\left( {Rf} \right)\left( {\zeta ,\;z} \right){|^2}{d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^\infty |\left( {Rf} \right)\left( {\zeta ,\;z} \right){|^2}{d_{\omega ,q}}\zeta \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \le {1 \over {{v^2}}}\mathop \smallint \nolimits_{{\omega _0}}^d {\left| {{f^{\left( 1 \right)}}\left( \zeta \right)} \right|^2}{d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^\infty {\left| {{f^{\left( 2 \right)}}\left( \zeta \right)} \right|^2}{d_{\omega ,q}}\zeta , \cr} where v = Im z.

Proof

Combining (3.13) and (3.10), for each 1qn>d {1 \over {{q^n}}} > d , n ∈ ℕ, we obtain ω0dR1qnfζ, z2dω,qζ+d1qnR1qnfζ, z2dω,qζ=m=1f,θm,1qn,zn2αm,1qn2|λm,1qnz|2 =1v2ω0df1ς2dω,qς+1v2d1qnf2ς2dω,qς. \eqalign{ & \mathop \smallint \nolimits_{{\omega _0}}^d {\left| {\left( {{R_{{1 \over {{q^n}}}}}f} \right)\left( {\zeta ,\;z} \right)} \right|^2}{d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} {\left| {\left( {{R_{{1 \over {{q^n}}}}}f} \right)\left( {\zeta ,\;z} \right)} \right|^2}{d_{\omega ,q}}\zeta \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop \sum \nolimits_{m = 1}^\infty {{{{\left| {{{\langle f\left( \cdot \right),{\theta _{m,{1 \over {{q^n}}}}}\left( { \cdot ,z} \right)\rangle }_n}} \right|}^2}} \over {\alpha _{m,{1 \over {{q^n}}}}^2|{\lambda _{m,{1 \over {{q^n}}}}} - z{|^2}}} \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {1 \over {{v^2}}}\mathop \smallint \nolimits_{{\omega _0}}^d {\left| {{f^{\left( 1 \right)}}\left( \varsigma \right)} \right|^2}{d_{\omega ,q}}\varsigma + {1 \over {{v^2}}}\mathop \smallint \nolimits_d^{{1 \over {{q^n}}}} {\left| {{f^{\left( 2 \right)}}\left( \varsigma \right)} \right|^2}{d_{\omega ,q}}\varsigma . \cr}

Letting n → ∞, we get the desired result.

Theorem 3.10 (Integral Representation of the Resolvent).

For every non-real z and for each fH, we obtain Rfζ, z=θζ,λλzFλdϱλ, \left( {Rf} \right)\left( {\zeta ,\;z} \right) = \mathop \smallint \nolimits_{ - \infty }^\infty {{\theta \left( {\zeta ,\lambda } \right)} \over {\lambda - z}}F\left( \lambda \right)d\varrho \left( \lambda \right), where Fλ=ω0df1ζθ1ζ, λdω,qζ+limσdσf2ζθ2ζ, λdω,qζ. F\left( \lambda \right) = \mathop \smallint \nolimits_{{\omega _0}}^d {f^{\left( 1 \right)}}\left( \zeta \right){\theta ^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right){d_{\omega ,q}}\zeta + \mathop {\lim }\limits_{\sigma \to \infty } \mathop \smallint \nolimits_d^\sigma {f^{\left( 2 \right)}}\left( \zeta \right){\theta ^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right){d_{\omega ,q}}\zeta .

Proof

Suppose that f(ζ) = fσ(ζ) satisfies (3.2)–(3.4) and vanishes outside the set [ω0, d) ∪ (d, σ], where d<σ<1qn d< \sigma< {1 \over {{q^n}}} , n ∈ ℕ. Let Fσλ=ω0dfσ1ζθ1ζ, λdω,qζ+dσfσ2ζθ2ζ, λdω,qζ. {F_\sigma }\left( \lambda \right) = \mathop \smallint \nolimits_{{\omega _0}}^d f_\sigma ^{\left( 1 \right)}\left( \zeta \right){\theta ^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right){d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^\sigma f_\sigma ^{\left( 2 \right)}\left( \zeta \right){\theta ^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right){d_{\omega ,q}}\zeta .

By (3.13), we see that R1qnfσζ, z=θζ,λλzFσλdϱ1qnλ=aθζ,λλzFσλdϱ1qnλ+aaθζ,λλzFσλdϱ1qnλ+aθζ,λλzFσλdϱ1qnλ=I1+I2+I3. \eqalign{ & \matrix{ {\left( {{R_{{1 \over {{q^n}}}}}{f_\sigma }} \right)\left( {\zeta ,\;z} \right)} \hfill & { = \mathop \smallint \nolimits_{ - \infty }^\infty {{\theta \left( {\zeta ,\lambda } \right)} \over {\lambda - z}}{F_\sigma }\left( \lambda \right)d{\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right)} \hfill \cr {} \hfill & { = \mathop \smallint \nolimits_{ - \infty }^{ - a} {{\theta \left( {\zeta ,\lambda } \right)} \over {\lambda - z}}{F_\sigma }\left( \lambda \right)d{\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right) + \mathop \smallint \nolimits_{ - a}^a {{\theta \left( {\zeta ,\lambda } \right)} \over {\lambda - z}}{F_\sigma }\left( \lambda \right)d{\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right)} \hfill \cr {} \hfill & { + \mathop \smallint \nolimits_a^\infty {{\theta \left( {\zeta ,\lambda } \right)} \over {\lambda - z}}{F_\sigma }\left( \lambda \right)d{\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right) = {I_1} + {I_2} + {I_3}.} \hfill \cr } \cr & \cr}

Firstly, we will estimate I1. From (3.13), we deduce that I1=--aθ(ζ,λ) z-λFσ(λ)dϱ1qn (λ)=λk,1qn <-aθk,1qn (ζ)αk,1qn 2(z-λk,1qn ){ω0dfσ(1) (ζ)θk,qn (1)(ζ)dω,qζ+dσfσ(2) (ζ)θk,qn (2)(ζ)dω,qζ}(λk,1qn <-aθk,1qn 2(ζ) αk,1qn 2|z-λk,1qn |2 ) 1/2×(λk,1qn <-a1αk,1qn 2 |ω0 dfσ(1) (ζ)θk, qn (1)(ζ)dω,qζ+dσfσ(2) (ζ)θk, qn (2)(ζ)dω,qζ|2 ) 1/2. \matrix{ {{I_1}} \hfill & { = \mathop \smallint \nolimits_{ - \infty }^{ - a} {{\theta \left( {\zeta ,\lambda } \right)} \over {z - \lambda }}{F_\sigma }\left( \lambda \right)d{\varrho _{{1 \over {{q^n}}}}}\left( \lambda \right)} \hfill \cr {} \hfill & { = \sum\limits_{{\lambda _{k,{1 \over {{q^n}}}}}< - a} {{{{\theta _{k,{1 \over {{q^n}}}}}\left( \zeta \right)} \over {\alpha _{k,{1 \over {{q^n}}}}^2\left( {z - {\lambda _{k,{1 \over {{q^n}}}}}} \right)}}\left\{ {\mathop \smallint \nolimits_{{\omega _0}}^d f_\sigma ^{\left( 1 \right)}\left( \zeta \right)\theta _{k,{{_1} \over {{q^n}}}}^{(1)}\left( \zeta \right){d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^\sigma f_\sigma ^{\left( 2 \right)}\left( \zeta \right)\theta _{k,{{_1} \over {{q^n}}}}^{(2)}\left( \zeta \right){d_{\omega ,q}}\zeta } \right\}} } \hfill \cr {} \hfill & { \le {{\left( {\sum\limits_{{\lambda _{k,{1 \over {{q^n}}}}}< - a} {{{\theta _{k,{1 \over {{q^n}}}}^2\left( \zeta \right)} \over {\alpha _{k,{1 \over {{q^n}}}}^2{{\left| {z - {\lambda _{k,{1 \over {{q^n}}}}}} \right|}^2}}}} } \right)}^{1/2}}} \hfill \cr {} \hfill & { \times {{\left( {\sum\limits_{{\lambda _{k,{1 \over {{q^n}}}}}< - a} {{1 \over {\alpha _{k,{1 \over {{q^n}}}}^2}}{{\left| {\mathop \smallint \nolimits_{{\omega _0}}^d f_\sigma ^{\left( 1 \right)}\left( \zeta \right)\theta _{k,{{_1} \over {{q^n}}}}^{(1)}\left( \zeta \right){d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^\sigma f_\sigma ^{\left( 2 \right)}\left( \zeta \right)\theta _{k,{{_1} \over {{q^n}}}}^{(2)}\left( \zeta \right){d_{\omega ,q}}\zeta } \right|}^2}} } \right)}^{1/2}}.} \hfill \cr }

Integrating twice by parts, we find ω0 dfσ(1) (ζ)θk, qn (1)(ζ)dω,qζ+σdfσ(2) (ζ)θk, qn (2)(ζ)dω,qζ=-1λk,1qn ω0 dfσ(1) (ζ){1qD-ωq,1q Dω,qθk,qn (1)(ζ)-v(ζ)θk,qn (1)(ζ) }dω,qζ-1λk,1qn dσfσ(2) (ζ){1qD-ωq,1q Dω,qθk,qn (2)(ζ)-v(ζ)θk,qn (2)(ζ) }dω,qζ=-1λk,1qn ω0 d{1qD-ωq,1q Dω,qfσ(1) (ζ)-v(ζ)fσ(1) (ζ) }θk, qn (1)(ζ)dω,qζ-1λk,1qn dσ{1qD-ωq,1q Dω,qfσ(2) (ζ)-v(ζ)fσ(2) (ζ) }θk, qn (2)(ζ)dω,qζ. \eqalign{ & \mathop \smallint \nolimits_{{\omega _0}}^d f_\sigma ^{\left( 1 \right)}\left( \zeta \right)\theta _{k,{{_1} \over {{q^n}}}}^{(1)}\left( \zeta \right){d_{\omega ,q}}\zeta + \mathop \smallint \nolimits_d^\sigma f_\sigma ^{\left( 2 \right)}\left( \zeta \right)\theta _{k,{{_1} \over {{q^n}}}}^{(2)}\left( \zeta \right){d_{\omega ,q}}\zeta \cr & = - {1 \over {{\lambda _{k,{1 \over {{q^n}}}}}}}\mathop \smallint \nolimits_{{\omega _0}}^d f_\sigma ^{\left( 1 \right)}\left( \zeta \right)\left\{ {{1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}\theta _{k,{{_1} \over {{q^n}}}}^{(1)}\left( \zeta \right) - v\left( \zeta \right)\theta _{k,{{_1} \over {{q^n}}}}^{(1)}\left( \zeta \right)} \right\}{d_{\omega ,q}}\zeta \cr & - {1 \over {{\lambda _{k,{1 \over {{q^n}}}}}}}\mathop \smallint \nolimits_d^\sigma f_\sigma ^{\left( 2 \right)}\left( \zeta \right)\left\{ {{1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}\theta _{k,{{_1} \over {{q^n}}}}^{(2)}\left( \zeta \right) - v\left( \zeta \right)\theta _{k,{{_1} \over {{q^n}}}}^{(2)}\left( \zeta \right)} \right\}{d_{\omega ,q}}\zeta \cr & = - {1 \over {{\lambda _{k,{1 \over {{q^n}}}}}}}\mathop \smallint \nolimits_{{\omega _0}}^d \left\{ {{1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}f_\sigma ^{\left( 1 \right)}\left( \zeta \right) - v\left( \zeta \right)f_\sigma ^{\left( 1 \right)}\left( \zeta \right)} \right\}\theta _{k,{{_1} \over {{q^n}}}}^{(1)}\left( \zeta \right){d_{\omega ,q}}\zeta \cr & - {1 \over {{\lambda _{k,{1 \over {{q^n}}}}}}}\mathop \smallint \nolimits_d^\sigma \left\{ {{1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}f_\sigma ^{\left( 2 \right)}\left( \zeta \right) - v\left( \zeta \right)f_\sigma ^{\left( 2 \right)}\left( \zeta \right)} \right\}\theta _{k,{{_1} \over {{q^n}}}}^{(2)}\left( \zeta \right){d_{\omega ,q}}\zeta . \cr}

By Lemma 3.6, we get I1K1/2a×λk,1qn<a1αk,1qn2ω0d{1qDωq,1qDω,qfσ1ζvζfσ1ζ}θk,1qn(1)ζdω,qζ+dσ1qDωq,1qDω,qfσ2ζvζfσ2ζθk,1qn(2)ζdω,qζ21/2. \matrix{ {{I_1}} \hfill & { \le {{{K^{1/2}}} \over a}} \hfill \cr {} \hfill & { \times \left( {\sum\limits_{{\lambda _{k,{1 \over {{q^n}}}}}< - a} {{1 \over {\alpha _{k,{1 \over {{q^n}}}}^2}}\mathop \smallint \nolimits_{{\omega _0}}^d \{ {1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}f_\sigma ^{\left( 1 \right)}\left( \zeta \right) - v\left( \zeta \right)f_\sigma ^{\left( 1 \right)}\left( \zeta \right)\} \theta _{k,{{{_1}} \over {{q^n}}}}^{(1)}\left( \zeta \right){d_{\omega ,q}}\zeta } } \right.} \hfill \cr {} \hfill & {\,\,\,{{\left. {{{\left. {\, + \mathop \smallint \nolimits_d^\sigma \left\{ {{1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}f_\sigma ^{\left( 2 \right)}\left( \zeta \right) - v\left( \zeta \right)f_\sigma ^{\left( 2 \right)}\left( \zeta \right)} \right\}\theta _{k,{{_1} \over {{q^n}}}}^{(2)}\left( \zeta \right){d_{\omega ,q}}\zeta } \right|}^2}} \right)}^{1/2}}.} \hfill \cr } Using Bessel inequality, we see that I1K1/2aω0σ1qDωq,1qDω,qfσ1ζvζfσ1ζ2dω,qζ+dσ1qDωq,1qDω,qfσ2ζvζfσ2ζ2dω,qζ1/2=Ca. \eqalign{ & {I_1} \le {{{K^{1/2}}} \over a}\left[ {\mathop \smallint \nolimits_{{\omega _0}}^\sigma {{\left| {{1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}f_\sigma ^{\left( 1 \right)}\left( \zeta \right) - v\left( \zeta \right)f_\sigma ^{\left( 1 \right)}\left( \zeta \right)} \right|}^2}{d_{\omega ,q}}\zeta } \right. \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + {\left. {\mathop \smallint \nolimits_d^\sigma {{\left| {{1 \over q}{D_{ - {\omega \over q},{1 \over q}}}{D_{\omega ,q}}f_\sigma ^{\left( 2 \right)}\left( \zeta \right) - v\left( \zeta \right)f_\sigma ^{\left( 2 \right)}\left( \zeta \right)} \right|}^2}{d_{\omega ,q}}\zeta } \right]^{1/2}} = {C \over a}. \cr}

It is proved similarly that I3Ca {I_3} \le {C \over a} . Then I1 and I3 tend to zero as a → ∞, uniformly in 1qn {1 \over {{q_n}}} . It follows from the Helly selection theorem and (3.17) that Rfσζ, z=θζ,λzλFσλdϱλ. \left( {R{f_\sigma }} \right)\left( {\zeta ,\;z} \right) = \mathop \smallint \nolimits_{ - \infty }^\infty {{\theta \left( {\zeta ,\lambda } \right)} \over {z - \lambda }}{F_\sigma }\left( \lambda \right)d\varrho \left( \lambda \right). As is known, if f(·) ∈ H, then we find a sequence fσςσ=1 \left\{ {{f_\sigma }\left( \varsigma \right)} \right\}_{\sigma = 1}^\infty that satisfies the previous conditions and tends to f(ζ) as σ → ∞. From (3.10), the sequence of Fourier transform converges to the transform of f(ζ). Using Lemmas 3.7 and 3.9, we can pass to the limit σ → ∞ in (3.18). Thus, we get the desired result.

Remark 3.11.

Using Theorem 3.10, we infer that ω0(Rf1)ς, zg1ςdω,qς+d(Rf2)ς, zg2ςdω,qς=FλGλzλdϱλ, \eqalign{ & \mathop \smallint \nolimits_{{\omega _0}}^\infty (R{f^{\left( 1 \right)}})\left( {\varsigma ,\;z} \right){g^{\left( 1 \right)}}\left( \varsigma \right){d_{\omega ,q}}\varsigma + \mathop \smallint \nolimits_d^\infty (R{f^{\left( 2 \right)}})\left( {\varsigma ,\;z} \right){g^{\left( 2 \right)}}\left( \varsigma \right){d_{\omega ,q}}\varsigma \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop \smallint \nolimits_{ - \infty }^\infty {{F\left( \lambda \right)G\left( \lambda \right)} \over {z - \lambda }}d\varrho \left( \lambda \right), \cr} where Fλ=ω0df1ζθ1ζ, λdω,qζ+limσdσf2ζθ2ζ, λdω,qζ, F\left( \lambda \right) = \mathop \smallint \nolimits_{{\omega _0}}^d {f^{\left( 1 \right)}}\left( \zeta \right){\theta ^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right){d_{\omega ,q}}\zeta + \mathop {\lim }\limits_{\sigma \to \infty } \mathop \smallint \nolimits_d^\sigma {f^{\left( 2 \right)}}\left( \zeta \right){\theta ^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right){d_{\omega ,q}}\zeta , and Gλ=ω0dg1ζθ1ζ, λdω,qζ+limσω0σg2ζθ2ζ, λdω,qζ. G\left( \lambda \right) = \mathop \smallint \nolimits_{{\omega _0}}^d {g^{\left( 1 \right)}}\left( \zeta \right){\theta ^{\left( 1 \right)}}\left( {\zeta ,\;\lambda } \right){d_{\omega ,q}}\zeta + \mathop {\lim }\limits_{\sigma \to \infty } \mathop \smallint \nolimits_{{\omega _0}}^\sigma {g^{\left( 2 \right)}}\left( \zeta \right){\theta ^{\left( 2 \right)}}\left( {\zeta ,\;\lambda } \right){d_{\omega ,q}}\zeta .

Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Matemáticas, Matemáticas generales