This work is licensed under the Creative Commons Attribution 4.0 International License.
B.P. Allahverdiev and H. Tuna, A representation of the resolvent operator of singular Hahn–Sturm–Liouville problem, Numer. Funct. Anal. Optim. 41 (2020), no. 4, 413–431.AllahverdievB.P.TunaH.A representation of the resolvent operator of singular Hahn–Sturm–Liouville problemNumer. Funct. Anal. Optim.4120204413431Search in Google Scholar
R.Kh. Amirov and A.S. Ozkan, Discontinuous Sturm–Liouville problems with eigenvalue dependent boundary condition, Math. Phys. Anal. Geom. 17 (2014), no. 3–4, 483–491.AmirovR.Kh.OzkanA.S.Discontinuous Sturm–Liouville problems with eigenvalue dependent boundary conditionMath. Phys. Anal. Geom.1720143–4483491Search in Google Scholar
M.H. Annaby, A.E. Hamza, and K.A. Aldwoah, Hahn difference operator and associated Jackson–Nörlund integrals, J. Optim. Theory Appl. 154 (2012), no. 1, 133–153.AnnabyM.H.HamzaA.E.AldwoahK.A.Hahn difference operator and associated Jackson–Nörlund integralsJ. Optim. Theory Appl.15420121133153Search in Google Scholar
M.H. Annaby, A.E. Hamza, and S.D. Makharesh, A Sturm–Liouville theory for Hahn difference operator, in: M.Z. Nashed and X. Li (Eds.), Frontiers in Orthogonal Polynomials and q-Series, World Scientific, Singapore, 2018, pp. 35–83.AnnabyM.H.HamzaA.E.MakhareshS.D.A Sturm–Liouville theory for Hahn difference operatorinNashedM.Z.LiX.(Eds.)Frontiers in Orthogonal Polynomials and q-SeriesWorld ScientificSingapore20183583Search in Google Scholar
M.H. Annaby, Z.S. Mansour, and I.A. Soliman, q-Titchmarsh–Weyl theory: series expansion, Nagoya Math. J. 205 (2012), 67–118.AnnabyM.H.MansourZ.S.SolimanI.A.q-Titchmarsh–Weyl theory: series expansionNagoya Math. J.205201267118Search in Google Scholar
K. Aydemir, H. Olǧar, and O.Sh. Mukhtarov, The principal eigenvalue and the principal eigenfunction of a boundary-value-transmission problem, Turk. J. Math. Comput. Sci. 11 (2019), no. 2, 97–100.AydemirK.OlǧarH.MukhtarovO.Sh.The principal eigenvalue and the principal eigenfunction of a boundary-value-transmission problemTurk. J. Math. Comput. Sci.112019297100Search in Google Scholar
K. Aydemir, H. Olǧar, O.Sh. Mukhtarov, and F. Muhtarov, Differential operator equations with interface conditions in modified direct sum spaces, Filomat 32 (2018), no. 3, 921–931.AydemirK.OlǧarH.MukhtarovO.Sh.MuhtarovF.Differential operator equations with interface conditions in modified direct sum spacesFilomat3220183921931Search in Google Scholar
F.A. Çetinkaya, A discontinuous q-fractional boundary value problem with eigenparameter dependent boundary conditions, Miskolc Math. Notes 20 (2019), no. 2, 795–806.ÇetinkayaF.A.A discontinuous q-fractional boundary value problem with eigenparameter dependent boundary conditionsMiskolc Math. Notes2020192795806Search in Google Scholar
Y. Guldu, R.Kh. Amirov, and N. Topsakal, On impulsive Sturm–Liouville operators with singularity and spectral parameter in boundary conditions, Ukrainian Math. J. 64 (2013), no. 12, 1816–1838.GulduY.AmirovR.Kh.TopsakalN.On impulsive Sturm–Liouville operators with singularity and spectral parameter in boundary conditionsUkrainian Math. J.6420131218161838Search in Google Scholar
W. Hahn, Beitraäge zur Theorie der Heineschen Reihen. Die 24 Integrale der hyper-geometrischen q-Differenzengleichung. Das q-Analogon der Laplace–Transformation, Math. Nachr. 2 (1949), 340–379.HahnW.Beitraäge zur Theorie der Heineschen Reihen. Die 24 Integrale der hyper-geometrischen q-Differenzengleichung. Das q-Analogon der Laplace–TransformationMath. Nachr.21949340379Search in Google Scholar
W. Hahn, Ein Beitrag zur Theorie der Orthogonalpolynome, Monatsh. Math. 95 (1983), no. 1, 19–24.HahnW.Ein Beitrag zur Theorie der OrthogonalpolynomeMonatsh. Math.95198311924Search in Google Scholar
D. Karahan, On a q-analogue of the Sturm–Liouville operator with discontinuity conditions, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki 26 (2022), no. 3, 407–418.KarahanD.On a q-analogue of the Sturm–Liouville operator with discontinuity conditionsVestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki2620223407418Search in Google Scholar
D. Karahan and Kh.R. Mamedov, Sampling theory associated with q-Sturm–Liouville operator with discontinuity conditions, J. Contemp. Appl. Math. 10 (2020), no. 2, 40–48.KarahanD.MamedovKh.R.Sampling theory associated with q-Sturm–Liouville operator with discontinuity conditionsJ. Contemp. Appl. Math.10202024048Search in Google Scholar
D. Karahan and Kh.R. Mamedov, On a q-boundary value problem with discontinuity conditions, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz. 13 (2021), no. 4, 5–12.KarahanD.MamedovKh.R.On a q-boundary value problem with discontinuity conditionsVestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.1320214512Search in Google Scholar
A.N. Kolmogorov and S.V. Fomin, Introductory Real Analysis, Dover Publications, New York, 1970.KolmogorovA.N.FominS.V.Introductory Real AnalysisDover PublicationsNew York1970Search in Google Scholar
B.M. Levitan and I.S. Sargsjan, Sturm–Liouville and Dirac Operators, Math. Appl. (Soviet Ser.), 59, Kluwer Academic Publishers Group, Dordrecht, 1991.LevitanB.M.SargsjanI.S.Sturm–Liouville and Dirac OperatorsMath. Appl. (Soviet Ser.)59Kluwer Academic Publishers GroupDordrecht1991Search in Google Scholar
A.V. Likov and Yu.A. Mikhailov, The Theory of Heat and Mass Transfer (in Russian), Qosenerqoizdat, 1963.LikovA.V.MikhailovYu.A.The Theory of Heat and Mass Transfer(in Russian)Qosenerqoizdat1963Search in Google Scholar
S. Mosazadeh, Spectral properties and a Parseval’s equality in the singular case for q-Dirac problem, Adv. Difference Equ. (2019), Paper No. 522, 14 pp. DOI: 10.1186/s13662-019-2464-y.MosazadehS.Spectral properties and a Parseval’s equality in the singular case for q-Dirac problemAdv. Difference Equ.2019Paper No. 5221410.1186/s13662-019-2464-yOpen DOISearch in Google Scholar
O. Mukhtarov, H. Olǧar, and K. Aydemir, Eigenvalue problems with interface conditions, Konuralp J. Math. 8 (2020), no. 2, 284–286.MukhtarovO.OlǧarH.AydemirK.Eigenvalue problems with interface conditionsKonuralp J. Math.820202284286Search in Google Scholar
M.A. Naimark, Linear Differential Operators, 2nd ed., Izdat. Nauka, Moscow, 1969; English transl. of 1st. ed., 1,2, New York, 1968.NaimarkM.A.Linear Differential Operators2nd edIzdat.NaukaMoscow1969English transl. of 1st. ed., 1,2, New York, 1968Search in Google Scholar
N. Palamut Kosar, On a spectral theory of singular Hahn difference equation of a Sturm–Liouville type problem with transmission conditions, Math. Methods Appl. Sci. 46 (2023), no. 9, 11099–11111.Palamut KosarN.On a spectral theory of singular Hahn difference equation of a Sturm–Liouville type problem with transmission conditionsMath. Methods Appl. Sci.46202391109911111Search in Google Scholar
E.C. Titchmarsh, Eigenfunction Expansions Associated with Second-order Differential Equations, Part I, Clarendon Press, Oxford, 1962.TitchmarshE.C.Eigenfunction Expansions Associated with Second-order Differential Equations, Part IClarendon PressOxford1962Search in Google Scholar
Y.P. Wang and H. Koyunbakan, On the Hochstadt–Lieberman theorem for discontinuous boundary-valued problems, Acta Math. Sin. (Engl. Ser.) 30 (2014), no. 6, 985–992.WangY.P.KoyunbakanH.On the Hochstadt–Lieberman theorem for discontinuous boundary-valued problemsActa Math. Sin. (Engl. Ser.)3020146985992Search in Google Scholar
H. Weyl, Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Functionen, Math. Ann. 68 (1910), no. 2, 220–269.WeylH.Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher FunctionenMath. Ann.6819102220269Search in Google Scholar