High-Dimensional Feature Optimization and Real-Time Prediction Model with Support Vector Machines for Fault Diagnosis of Electrical Equipment
and
Mar 19, 2025
About this article
Published Online: Mar 19, 2025
Received: Oct 25, 2024
Accepted: Feb 03, 2025
DOI: https://doi.org/10.2478/amns-2025-0480
Keywords
© 2025 Lei Li et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

After using the model presented in this article
Prediction fault type | ||||||
---|---|---|---|---|---|---|
Actual fault type | ||||||
523 | 0 | 27 | 0 | 0 | ||
0 | 550 | 0 | 0 | 0 | ||
63 | 0 | 205 | 5 | 277 | ||
78 | 0 | 134 | 275 | 63 | ||
65 | 0 | 278 | 32 | 175 |
The prediction of ammonia in different dimensions
Dimension m | Parameter C | Parameter g | Parameter |
Parameter optimization error |
---|---|---|---|---|
2 | 6 | 220.3 | 0.000945 | 0.25 |
3 | 25.6 | 125.4 | 0.08 | 0.18 |
4 | 9.5 | 255.1 | 0.000945 | 0.344 |
5 | 72.14 | 46.8 | 0.145 | 0.0051 |
6 | 55.31 | 91.3 | 0.000945 | 0.00241 |
7 | 53.64 | 75.6 | 0.00088 | 0.00575 |
Transformer fault characteristic gas data(μL/L)
Time | H2 | C2H6 | C2H2 | C2H4 | CH4 |
---|---|---|---|---|---|
Supplementary data | 22.1 | 110.1 | 0 | 67.6 | 32 |
2022/08/11 | 22.3 | 109.2 | 0 | 67.8 | 31.6 |
2022/09/01 | 21.6 | 107.8 | 0 | 66.7 | 31.7 |
2022/09/08 | 21.1 | 106.7 | 0 | 66.6 | 31.2 |
2022/10/11 | 19.9 | 106.5 | 0 | 64.5 | 30.6 |
Supplementary data | 20.2 | 104.8 | 0 | 64.2 | 30.9 |
2022/12/25 | 18.2 | 103.9 | 0 | 62.6 | 30.5 |
Supplementary data | 19.1 | 104.7 | 0 | 62.9 | 30.5 |
Supplementary data | 18.8 | 103.7 | 0 | 63.4 | 30.4 |
2023/01/01 | 18.6 | 102.4 | 0 | 62.5 | 30.7 |
Supplementary data | 18.7 | 102.7 | 0 | 62.5 | 31 |
2023/02/12 | 18.7 | 102.5 | 0 | 61.9 | 30.2 |
Supplementary data | 19 | 103.9 | 0 | 62.5 | 31.6 |
2023/04/12 | 19.3 | 103.5 | 0 | 63 | 31.5 |
2023/05/01 | 19.5 | 103.8 | 0 | 63.2 | 31 |
Supplementary data | 19.6 | 101.9 | 0 | 63.5 | 29.5 |
Supplementary data | 19.9 | 102.5 | 0 | 63.2 | 31 |
2023/07/02 | 21.2 | 104.5 | 0 | 64.5 | 31.5 |
2023/08/11 | 21.2 | 105.1 | 0 | 64.2 | 31.5 |
2023/10/11 | 21.6 | 108.6 | 0 | 64.4 | 30 |
2024/01/01 | 21.9 | 110.6 | 0 | 65.3 | 32.6 |
2024/01/15 | 22 | 115.2 | 0 | 65.1 | 33.3 |
Test results
Name | Time | Actual value | SVR/BP Predictive value | RE% of SVR/BP | MAPE% of SVR/BP | |||
---|---|---|---|---|---|---|---|---|
H2 | 1.39 | 20.51 | 20.937 | 20.902 | 4.12 | 5.33 | 4.04 | 5.14 |
2.01 | 20.59 | 20.96 | 20.72 | -3.99 | 5.32 | |||
C2H6 | 0.67 | 111.8 | 111.503 | 111.812 | 0.66 | -0.079 | 1.925 | 0.301 |
1.89 | 113.52 | 112.57 | 112.43 | 1.91 | 1.46 | |||
C2H4 | 1.48 | 64.41 | 64.12 | 64.95 | 1.145 | -2.2 | 0.9975 | 1.735 |
2.31 | 64.89 | 64.285 | 64.89 | -0.59 | 2.9 | |||
CH4 | 0.98 | 31.86 | 32.122 | 31.924 | 2.5 | 3.6 | 2.502 | 3.43 |
2.47 | 31.6 | 31.74 | 32.18 | 1.184 | -3.19 |
Before using the model presented in this article
Prediction fault type | ||||||
---|---|---|---|---|---|---|
Actual fault type | ||||||
550 | 0 | 0 | 0 | 0 | ||
0 | 550 | 0 | 0 | 0 | ||
195 | 0 | 95 | 86 | 174 | ||
256 | 0 | 81 | 138 | 75 | ||
193 | 0 | 140 | 55 | 162 |