High-Dimensional Feature Optimization and Real-Time Prediction Model with Support Vector Machines for Fault Diagnosis of Electrical Equipment
et
19 mars 2025
À propos de cet article
Publié en ligne: 19 mars 2025
Reçu: 25 oct. 2024
Accepté: 03 févr. 2025
DOI: https://doi.org/10.2478/amns-2025-0480
Mots clés
© 2025 Lei Li et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

After using the model presented in this article
Prediction fault type | ||||||
---|---|---|---|---|---|---|
Actual fault type | ||||||
523 | 0 | 27 | 0 | 0 | ||
0 | 550 | 0 | 0 | 0 | ||
63 | 0 | 205 | 5 | 277 | ||
78 | 0 | 134 | 275 | 63 | ||
65 | 0 | 278 | 32 | 175 |
The prediction of ammonia in different dimensions
Dimension m | Parameter C | Parameter g | Parameter |
Parameter optimization error |
---|---|---|---|---|
2 | 6 | 220.3 | 0.000945 | 0.25 |
3 | 25.6 | 125.4 | 0.08 | 0.18 |
4 | 9.5 | 255.1 | 0.000945 | 0.344 |
5 | 72.14 | 46.8 | 0.145 | 0.0051 |
6 | 55.31 | 91.3 | 0.000945 | 0.00241 |
7 | 53.64 | 75.6 | 0.00088 | 0.00575 |
Transformer fault characteristic gas data(μL/L)
Time | H2 | C2H6 | C2H2 | C2H4 | CH4 |
---|---|---|---|---|---|
Supplementary data | 22.1 | 110.1 | 0 | 67.6 | 32 |
2022/08/11 | 22.3 | 109.2 | 0 | 67.8 | 31.6 |
2022/09/01 | 21.6 | 107.8 | 0 | 66.7 | 31.7 |
2022/09/08 | 21.1 | 106.7 | 0 | 66.6 | 31.2 |
2022/10/11 | 19.9 | 106.5 | 0 | 64.5 | 30.6 |
Supplementary data | 20.2 | 104.8 | 0 | 64.2 | 30.9 |
2022/12/25 | 18.2 | 103.9 | 0 | 62.6 | 30.5 |
Supplementary data | 19.1 | 104.7 | 0 | 62.9 | 30.5 |
Supplementary data | 18.8 | 103.7 | 0 | 63.4 | 30.4 |
2023/01/01 | 18.6 | 102.4 | 0 | 62.5 | 30.7 |
Supplementary data | 18.7 | 102.7 | 0 | 62.5 | 31 |
2023/02/12 | 18.7 | 102.5 | 0 | 61.9 | 30.2 |
Supplementary data | 19 | 103.9 | 0 | 62.5 | 31.6 |
2023/04/12 | 19.3 | 103.5 | 0 | 63 | 31.5 |
2023/05/01 | 19.5 | 103.8 | 0 | 63.2 | 31 |
Supplementary data | 19.6 | 101.9 | 0 | 63.5 | 29.5 |
Supplementary data | 19.9 | 102.5 | 0 | 63.2 | 31 |
2023/07/02 | 21.2 | 104.5 | 0 | 64.5 | 31.5 |
2023/08/11 | 21.2 | 105.1 | 0 | 64.2 | 31.5 |
2023/10/11 | 21.6 | 108.6 | 0 | 64.4 | 30 |
2024/01/01 | 21.9 | 110.6 | 0 | 65.3 | 32.6 |
2024/01/15 | 22 | 115.2 | 0 | 65.1 | 33.3 |
Test results
Name | Time | Actual value | SVR/BP Predictive value | RE% of SVR/BP | MAPE% of SVR/BP | |||
---|---|---|---|---|---|---|---|---|
H2 | 1.39 | 20.51 | 20.937 | 20.902 | 4.12 | 5.33 | 4.04 | 5.14 |
2.01 | 20.59 | 20.96 | 20.72 | -3.99 | 5.32 | |||
C2H6 | 0.67 | 111.8 | 111.503 | 111.812 | 0.66 | -0.079 | 1.925 | 0.301 |
1.89 | 113.52 | 112.57 | 112.43 | 1.91 | 1.46 | |||
C2H4 | 1.48 | 64.41 | 64.12 | 64.95 | 1.145 | -2.2 | 0.9975 | 1.735 |
2.31 | 64.89 | 64.285 | 64.89 | -0.59 | 2.9 | |||
CH4 | 0.98 | 31.86 | 32.122 | 31.924 | 2.5 | 3.6 | 2.502 | 3.43 |
2.47 | 31.6 | 31.74 | 32.18 | 1.184 | -3.19 |
Before using the model presented in this article
Prediction fault type | ||||||
---|---|---|---|---|---|---|
Actual fault type | ||||||
550 | 0 | 0 | 0 | 0 | ||
0 | 550 | 0 | 0 | 0 | ||
195 | 0 | 95 | 86 | 174 | ||
256 | 0 | 81 | 138 | 75 | ||
193 | 0 | 140 | 55 | 162 |