Numerical simulation and optimization method of sports teaching and training based on embedded wireless communication network
Feb 27, 2025
About this article
Published Online: Feb 27, 2025
Received: Oct 13, 2024
Accepted: Jan 12, 2025
DOI: https://doi.org/10.2478/amns-2025-0097
Keywords
© 2025 Jiao Zhang, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

Influence of the main components of ASPP+LSTM_
Method | Components | PAMAP2 | MHEALTH | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
M1 | CNN | 0.701 | 0.147 | 0.514 | 0.612 | 0.601 | 0.821 | 0.101 | 0.605 | 0.708 | 0.413 |
M2 | LSTM | 0.689 | 0.151 | 0.507 | 0.605 | 0.589 | 0.812 | 0.105 | 0.598 | 0.700 | 0.405 |
M3 | CNN+LSTM | 0.710 | 0.144 | 0.520 | 0.616 | 0.609 | 0.825 | 0.099 | 0.610 | 0.710 | 0.418 |
M4 | ASPP | 0.703 | 0.146 | 0.516 | 0.614 | 0.603 | 0.822 | 0.100 | 0.607 | 0.709 | 0.414 |
M5 | ASPP+LSTM |
Compares our model with other deep learning mainstream methods in terms of Fβ(↓)$${F_\beta }\left( \downarrow \right)$$, MAE(↓)$$MAE\left( \downarrow \right)$$, Fβω(↑)$$F_\beta ^\omega \left( \uparrow \right)$$, and Sm(↑)$$\;{S_m}\left( \uparrow \right)$$ on two datasets_ The best result for each column is highlighted in bold_
Method | PAMAP2 | MHEALTH | ||||||
---|---|---|---|---|---|---|---|---|
AFNet [ |
0.721 | 0.184 | 0.526 | 0.636 | 0.815 | 0.114 | 0.612 | 0.708 |
DSS [ |
0.683 | 0.197 | 0.489 | 0.608 | 0.782 | 0.127 | 0.598 | 0.681 |
HRSOD [ |
0.692 | 0.193 | 0.505 | 0.617 | 0.795 | 0.122 | 0.605 | 0.690 |
FCSOD [ |
0.701 | 0.189 | 0.513 | 0.625 | 0.804 | 0.119 | 0.610 | 0.700 |
PA-KRN [ |
0.712 | 0.186 | 0.520 | 0.632 | 0.810 | 0.116 | 0.615 | 0.705 |
TSPOANe t[ |
0.716 | 0.185 | 0.523 | 0.634 | 0.813 | 0.115 | 0.618 | 0.707 |
Our |
Our model is compared with 17 state-of-the-art methods in terms of Em(↑)$$\;{E_m}\left( \uparrow \right)$$ on 2 datasets_
Method | PAMAP2 | MHEALTH | Method | PAMAP2 | MHEALTH |
---|---|---|---|---|---|
AFNet [ |
0.632 | 0.471 | CPD [ |
0.788 | 0.715 |
DSS [ |
0.624 | 0.586 | BASNet [ |
0.763 | 0.728 |
HRSOD [ |
0.682 | 0.524 | GCPANet [ |
0.722 | 0.762 |
FCSOD [ |
0.642 | 0.623 | LDF [ |
0.749 | 0.725 |
PA-KRN [ |
0.628 | 0.608 | ITSD [ |
0.792 | 0.781 |
TSPOANet [ |
0.692 | 0.611 | MINet [ |
0.814 | 0.744 |
BRN [ |
0.715 | 0.644 | GateNet [ |
0.826 | 0.791 |
PiCA [ |
0.754 | 0.672 | DUCRF [ |
0.851 | 0.821 |
PoolNet [ |
0.761 | 0.701 | Our | 0.869 | 0.865 |