Open Access

Numerical simulation and optimization method of sports teaching and training based on embedded wireless communication network

  
Feb 27, 2025

Cite
Download Cover

Figure 1.

Physical training system architecture.
Physical training system architecture.

Figure 2.

Multi-group LSTM network structure after convolution.
Multi-group LSTM network structure after convolution.

Figure 3.

Multiple performance metrics comparison of different models on PAMAP2 and MHEALTH datasets.
Multiple performance metrics comparison of different models on PAMAP2 and MHEALTH datasets.

Influence of the main components of ASPP+LSTM_

Method Components PAMAP2 MHEALTH
Fβ MAE Fβω$$F_\beta ^\omega$$ Sm Em Fβ MAE Fβω$$F_\beta ^\omega$$ Sm Em
M1 CNN 0.701 0.147 0.514 0.612 0.601 0.821 0.101 0.605 0.708 0.413
M2 LSTM 0.689 0.151 0.507 0.605 0.589 0.812 0.105 0.598 0.700 0.405
M3 CNN+LSTM 0.710 0.144 0.520 0.616 0.609 0.825 0.099 0.610 0.710 0.418
M4 ASPP 0.703 0.146 0.516 0.614 0.603 0.822 0.100 0.607 0.709 0.414
M5 ASPP+LSTM 0.723 0.140 0.530 0.625 0.617 0.834 0.096 0.618 0.715 0.425

Compares our model with other deep learning mainstream methods in terms of Fβ(↓)$${F_\beta }\left( \downarrow \right)$$, MAE(↓)$$MAE\left( \downarrow \right)$$, Fβω(↑)$$F_\beta ^\omega \left( \uparrow \right)$$, and  Sm(↑)$$\;{S_m}\left( \uparrow \right)$$ on two datasets_ The best result for each column is highlighted in bold_

Method PAMAP2 MHEALTH
Fβ MAE Fβω$$F_\beta ^\omega$$ Sm Fβ MAE Fβω$$F_\beta ^\omega$$ Sm
AFNet [3] 0.721 0.184 0.526 0.636 0.815 0.114 0.612 0.708
DSS [7] 0.683 0.197 0.489 0.608 0.782 0.127 0.598 0.681
HRSOD [39] 0.692 0.193 0.505 0.617 0.795 0.122 0.605 0.690
FCSOD [40] 0.701 0.189 0.513 0.625 0.804 0.119 0.610 0.700
PA-KRN [36] 0.712 0.186 0.520 0.632 0.810 0.116 0.615 0.705
TSPOANe t[14] 0.716 0.185 0.523 0.634 0.813 0.115 0.618 0.707
Our 0.740 0.178 0.540 0.649 0.822 0.110 0.625 0.715

Our model is compared with 17 state-of-the-art methods in terms of  Em(↑)$$\;{E_m}\left( \uparrow \right)$$ on 2 datasets_

Method PAMAP2 MHEALTH Method PAMAP2 MHEALTH
Em Em
AFNet [3] 0.632 0.471 CPD [35] 0.788 0.715
DSS [7] 0.624 0.586 BASNet [21] 0.763 0.728
HRSOD [39] 0.682 0.524 GCPANet [2] 0.722 0.762
FCSOD [40] 0.642 0.623 LDF [33] 0.749 0.725
PA-KRN [36] 0.628 0.608 ITSD [46] 0.792 0.781
TSPOANet [14] 0.692 0.611 MINet [18] 0.814 0.744
BRN [31] 0.715 0.644 GateNet [45] 0.826 0.791
PiCA [13] 0.754 0.672 DUCRF [37] 0.851 0.821
PoolNet [12] 0.761 0.701 Our 0.869 0.865
Language:
English