Numerical simulation and optimization method of sports teaching and training based on embedded wireless communication network
27 feb 2025
Acerca de este artículo
Publicado en línea: 27 feb 2025
Recibido: 13 oct 2024
Aceptado: 12 ene 2025
DOI: https://doi.org/10.2478/amns-2025-0097
Palabras clave
© 2025 Jiao Zhang, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

Influence of the main components of ASPP+LSTM_
Method | Components | PAMAP2 | MHEALTH | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
M1 | CNN | 0.701 | 0.147 | 0.514 | 0.612 | 0.601 | 0.821 | 0.101 | 0.605 | 0.708 | 0.413 |
M2 | LSTM | 0.689 | 0.151 | 0.507 | 0.605 | 0.589 | 0.812 | 0.105 | 0.598 | 0.700 | 0.405 |
M3 | CNN+LSTM | 0.710 | 0.144 | 0.520 | 0.616 | 0.609 | 0.825 | 0.099 | 0.610 | 0.710 | 0.418 |
M4 | ASPP | 0.703 | 0.146 | 0.516 | 0.614 | 0.603 | 0.822 | 0.100 | 0.607 | 0.709 | 0.414 |
M5 | ASPP+LSTM |
Compares our model with other deep learning mainstream methods in terms of Fβ(↓)$${F_\beta }\left( \downarrow \right)$$, MAE(↓)$$MAE\left( \downarrow \right)$$, Fβω(↑)$$F_\beta ^\omega \left( \uparrow \right)$$, and Sm(↑)$$\;{S_m}\left( \uparrow \right)$$ on two datasets_ The best result for each column is highlighted in bold_
Method | PAMAP2 | MHEALTH | ||||||
---|---|---|---|---|---|---|---|---|
AFNet [ |
0.721 | 0.184 | 0.526 | 0.636 | 0.815 | 0.114 | 0.612 | 0.708 |
DSS [ |
0.683 | 0.197 | 0.489 | 0.608 | 0.782 | 0.127 | 0.598 | 0.681 |
HRSOD [ |
0.692 | 0.193 | 0.505 | 0.617 | 0.795 | 0.122 | 0.605 | 0.690 |
FCSOD [ |
0.701 | 0.189 | 0.513 | 0.625 | 0.804 | 0.119 | 0.610 | 0.700 |
PA-KRN [ |
0.712 | 0.186 | 0.520 | 0.632 | 0.810 | 0.116 | 0.615 | 0.705 |
TSPOANe t[ |
0.716 | 0.185 | 0.523 | 0.634 | 0.813 | 0.115 | 0.618 | 0.707 |
Our |
Our model is compared with 17 state-of-the-art methods in terms of Em(↑)$$\;{E_m}\left( \uparrow \right)$$ on 2 datasets_
Method | PAMAP2 | MHEALTH | Method | PAMAP2 | MHEALTH |
---|---|---|---|---|---|
AFNet [ |
0.632 | 0.471 | CPD [ |
0.788 | 0.715 |
DSS [ |
0.624 | 0.586 | BASNet [ |
0.763 | 0.728 |
HRSOD [ |
0.682 | 0.524 | GCPANet [ |
0.722 | 0.762 |
FCSOD [ |
0.642 | 0.623 | LDF [ |
0.749 | 0.725 |
PA-KRN [ |
0.628 | 0.608 | ITSD [ |
0.792 | 0.781 |
TSPOANet [ |
0.692 | 0.611 | MINet [ |
0.814 | 0.744 |
BRN [ |
0.715 | 0.644 | GateNet [ |
0.826 | 0.791 |
PiCA [ |
0.754 | 0.672 | DUCRF [ |
0.851 | 0.821 |
PoolNet [ |
0.761 | 0.701 | Our | 0.869 | 0.865 |