Open Access

Alternative buffer systems in biopharmaceutical formulations and their effect on protein stability

, , , ,  and   
Sep 14, 2024

Cite
Download Cover

G. Walsh and E. Walsh, Biopharmaceutical benchmarks 2022, Nat. Biotechnol. 40 (2022) 1722–1760; https://doi.org/10.1038/s41587-022-01582-x Search in Google Scholar

N. C. Pace and C. Tanford, Thermodynamics of the unfolding of β-lactoglobulin A in aqueous urea solutions between 5 and 55°, Biochemistry 7 (1968) 198–208; https://doi.org/10.1021/bi00841a025 Search in Google Scholar

F. Jameel and S. Hershenson, Formulation and Process Development Strategies for Manufacturing Biopharmaceuticals, John Wiley & Sons, New Jersey 2002, pp. 69–105. Search in Google Scholar

L. O. Narhi, J. Schmit, K. Bechtold-Peters and D. Sharma, Classification of protein aggregates, J. Pharm. Sci. 101 (2012) 493–498; https://doi.org/10.1002/jps.22790 Search in Google Scholar

S. Hermeling, D. J. A. Crommelin, H. Schellekens and W. Jiskoot, Structure-immunogenicity relationships of therapeutic proteins, Pharm. Res. 21 (2004) 897–903; https://doi.org/10.1023/B:PHAM.0000029275.41323.a6 Search in Google Scholar

A. Braun, L. Kwee, M. A. Labow and J. Alsenz, Protein aggregates seem to play a key role among the parameters influencing the antigenicity of interferon alpha (IFN-α) in normal and transgenic mice, Pharm. Res. (1997) 1472–1478; https://doi.org/10.1023/A:1012193326789 Search in Google Scholar

Y. Le Basle, P. Chennell, N. Tokhadze, A. Astier and V. Sautou, Physicochemical stability of monoclonal antibodies: A review, J. Pharm. Sci. 109 (2020) 169–190; https://doi.org/10.1016/j.xphs.2019.08.009 Search in Google Scholar

E. Y. Chi, S. Krishnan, T. W. Randolph and J. F. Carpenter, Physical stability of proteins in aqueous solution: Mechanism and driving forces in nonnative protein aggregation, Pharm. Res. 20 (2003) 1325–1336; https://doi.org/10.1023/A:1025771421906 Search in Google Scholar

E. Y. Chi, Excipients and their effects on the quality of biologics, Aaps 1 (2012) 1–12. Search in Google Scholar

E. Proksch, Buffering capacity, Curr. Probl. Dermatology 54 (2018) 11–18; https://doi.org/10.1159/000489513 Search in Google Scholar

E. T. Urbansky and M. R. Schock, Understanding, deriving, and computing buffer capacity, J. Chem. Educ. 77 (2000) 1640–1644; https://doi.org/10.1021/ed077p1640 Search in Google Scholar

B. N. Dominy, D. Perl, F. X. Schmid and C. L. Brooks, The effects of ionic strength on protein stability: The cold shock protein family, J. Mol. Biol. 319 (2002) 541–554; https://doi.org/10.1016/S0022-2836(02)00259-0 Search in Google Scholar

S. O. Ugwu and A. P. Shireesh, The effect of buffers on protein conformational stability, Pharm. Technol. 81 (2004) 339–352; https://doi.org/10.1016/j.saa.2011.06.021 Search in Google Scholar

T. J. Zbacnik, R. E. Holcomb, D. S. Katayama, B. M. Murphy, R. W. Payne, R. C. Coccaro, G. J. Evans, J. E. Matsuura, C. S. Henry and M. C. Manning, Role of buffers in protein formulations, J. Pharm. Sci. 106 (2017) 713–733; https://doi.org/10.1016/j.xphs.2016.11.014 Search in Google Scholar

R. N. Goldberg, N. Kishore and R. M. Lennen, Thermodynamic quantities for the ionization reactions of buffers, J. Phys. Chem. Ref. Data 31 (2002) 231–370; https://doi.org/10.1063/1.1416902 Search in Google Scholar

K. C. Waterman, R. C. Adami, K. M. Alsante, J. Hong, M. S. Landis, F. Lombardo and C. J. Roberts, Stabilization of pharmaceuticals to oxidative degradation, Pharm. Dev. Technol. 7 (2002) 1–32; https://doi.org/10.1081/PDT-120002237 Search in Google Scholar

Y. H. Kim and W. E. Stites, Excluded volume effects upon protein stability in covalently crosslinked proteins with variable linker lengths, Bone 23 (2011) 1–7; https://doi.org/10.1021/bi800297j Search in Google Scholar

C. Du, G. Barnett, A. Borwankar, A. Lewandowski, N. Singh, S. Ghose, M. Borys and Z. J. Li, Protection of therapeutic antibodies from visible light induced degradation: Use safe light in manufacturing and storage, Eur. J. Pharm. Biopharm. 127 (2018) 37–43; https://doi.org/10.1016/j.ejpb.2018.02.007 Search in Google Scholar

M. Lei, C. Quan, Y. J. Wang, Y. H. Kao and C. Schöneich, Light-induced covalent buffer adducts to histidine in a model protein, Pharm. Res. 35 (2018); https://doi.org/10.1007/s11095-017-2339-4 Search in Google Scholar

S. D. Stroop, D. M. Conca, R. P. Lundgard, M. E. Renz, L. M. Peabody and S. D. Leigh, Photosensitizers form in histidine buffer and mediate the photodegradation of a monoclonal antibody, J. Pharm. Sci. 100 (2011) 5142–5155; https://doi.org/10.1002/jps.22714 Search in Google Scholar

Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Pharmacy, Pharmacy, other