University of Ljubljana Faculty of Pharmacy, Department of Pharmaceutical ChemistryLjubljana, Slovenia
Novartis, Global Drug Development, Technical Research & Development Biologics, Drug Product Development, Formulation Development Lek Pharmaceuticals d.d.Ljubljana, Slovenia
Novartis, Global Drug Development, Technical Research & Development Biologics, Drug Product Development, Formulation Development Lek Pharmaceuticals d.d.Ljubljana, Slovenia
Novartis, Global Drug Development, Technical Research & Development Biologics, Drug Product Development, Formulation Development Lek Pharmaceuticals d.d.Ljubljana, Slovenia
Novartis, Global Drug Development, Technical Research & Development Biologics, Drug Product Development, Formulation Development Lek Pharmaceuticals d.d.Ljubljana, Slovenia
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
G. Walsh and E. Walsh, Biopharmaceutical benchmarks 2022, Nat. Biotechnol.40 (2022) 1722–1760; https://doi.org/10.1038/s41587-022-01582-xSearch in Google Scholar
N. C. Pace and C. Tanford, Thermodynamics of the unfolding of β-lactoglobulin A in aqueous urea solutions between 5 and 55°, Biochemistry7 (1968) 198–208; https://doi.org/10.1021/bi00841a025Search in Google Scholar
F. Jameel and S. Hershenson, Formulation and Process Development Strategies for Manufacturing Biopharmaceuticals, John Wiley & Sons, New Jersey 2002, pp. 69–105.Search in Google Scholar
L. O. Narhi, J. Schmit, K. Bechtold-Peters and D. Sharma, Classification of protein aggregates, J. Pharm. Sci.101 (2012) 493–498; https://doi.org/10.1002/jps.22790Search in Google Scholar
S. Hermeling, D. J. A. Crommelin, H. Schellekens and W. Jiskoot, Structure-immunogenicity relationships of therapeutic proteins, Pharm. Res.21 (2004) 897–903; https://doi.org/10.1023/B:PHAM.0000029275.41323.a6Search in Google Scholar
A. Braun, L. Kwee, M. A. Labow and J. Alsenz, Protein aggregates seem to play a key role among the parameters influencing the antigenicity of interferon alpha (IFN-α) in normal and transgenic mice, Pharm. Res. (1997) 1472–1478; https://doi.org/10.1023/A:1012193326789Search in Google Scholar
Y. Le Basle, P. Chennell, N. Tokhadze, A. Astier and V. Sautou, Physicochemical stability of monoclonal antibodies: A review, J. Pharm. Sci.109 (2020) 169–190; https://doi.org/10.1016/j.xphs.2019.08.009Search in Google Scholar
E. Y. Chi, S. Krishnan, T. W. Randolph and J. F. Carpenter, Physical stability of proteins in aqueous solution: Mechanism and driving forces in nonnative protein aggregation, Pharm. Res.20 (2003) 1325–1336; https://doi.org/10.1023/A:1025771421906Search in Google Scholar
E. Y. Chi, Excipients and their effects on the quality of biologics, Aaps1 (2012) 1–12.Search in Google Scholar
E. Proksch, Buffering capacity, Curr. Probl. Dermatology54 (2018) 11–18; https://doi.org/10.1159/000489513Search in Google Scholar
E. T. Urbansky and M. R. Schock, Understanding, deriving, and computing buffer capacity, J. Chem. Educ.77 (2000) 1640–1644; https://doi.org/10.1021/ed077p1640Search in Google Scholar
B. N. Dominy, D. Perl, F. X. Schmid and C. L. Brooks, The effects of ionic strength on protein stability: The cold shock protein family, J. Mol. Biol.319 (2002) 541–554; https://doi.org/10.1016/S0022-2836(02)00259-0Search in Google Scholar
S. O. Ugwu and A. P. Shireesh, The effect of buffers on protein conformational stability, Pharm. Technol.81 (2004) 339–352; https://doi.org/10.1016/j.saa.2011.06.021Search in Google Scholar
T. J. Zbacnik, R. E. Holcomb, D. S. Katayama, B. M. Murphy, R. W. Payne, R. C. Coccaro, G. J. Evans, J. E. Matsuura, C. S. Henry and M. C. Manning, Role of buffers in protein formulations, J. Pharm. Sci.106 (2017) 713–733; https://doi.org/10.1016/j.xphs.2016.11.014Search in Google Scholar
R. N. Goldberg, N. Kishore and R. M. Lennen, Thermodynamic quantities for the ionization reactions of buffers, J. Phys. Chem. Ref. Data31 (2002) 231–370; https://doi.org/10.1063/1.1416902Search in Google Scholar
K. C. Waterman, R. C. Adami, K. M. Alsante, J. Hong, M. S. Landis, F. Lombardo and C. J. Roberts, Stabilization of pharmaceuticals to oxidative degradation, Pharm. Dev. Technol.7 (2002) 1–32; https://doi.org/10.1081/PDT-120002237Search in Google Scholar
Y. H. Kim and W. E. Stites, Excluded volume effects upon protein stability in covalently crosslinked proteins with variable linker lengths, Bone23 (2011) 1–7; https://doi.org/10.1021/bi800297jSearch in Google Scholar
C. Du, G. Barnett, A. Borwankar, A. Lewandowski, N. Singh, S. Ghose, M. Borys and Z. J. Li, Protection of therapeutic antibodies from visible light induced degradation: Use safe light in manufacturing and storage, Eur. J. Pharm. Biopharm.127 (2018) 37–43; https://doi.org/10.1016/j.ejpb.2018.02.007Search in Google Scholar
M. Lei, C. Quan, Y. J. Wang, Y. H. Kao and C. Schöneich, Light-induced covalent buffer adducts to histidine in a model protein, Pharm. Res.35 (2018); https://doi.org/10.1007/s11095-017-2339-4Search in Google Scholar
S. D. Stroop, D. M. Conca, R. P. Lundgard, M. E. Renz, L. M. Peabody and S. D. Leigh, Photosensitizers form in histidine buffer and mediate the photodegradation of a monoclonal antibody, J. Pharm. Sci.100 (2011) 5142–5155; https://doi.org/10.1002/jps.22714Search in Google Scholar