1. bookVolume 60 (2015): Issue 2 (June 2015)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Monte Carlo study of medium-energy electron penetration in aluminium and silver

Published Online: 22 Jun 2015
Volume & Issue: Volume 60 (2015) - Issue 2 (June 2015)
Page range: 361 - 366
Received: 15 Jul 2014
Accepted: 26 Jan 2015
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

Monte Carlo simulations are very useful for many physical processes. The transport of particles was simulated by Monte Carlo calculating the basic parameters such as probabilities of transmitted–reflected and angular-energy distributions after interaction with matter. Monte Carlo simulations of electron scattering based on the single scattering model were presented in the medium-energy region for aluminium and silver matters. Two basic equations are required the elastic scattering cross section and the energy loss. The Rutherford equation for the different screening parameters is investigated. This scattering model is accurate in the energy range from a few keV up to about 0.50 MeV. The reliability of the simulation method is analysed by comparing experimental data from transmission measurements.

Keywords

1. Reimer, L. (2000). Scanning electron microscopy: Physics of image formation and microanalysis. Meas. Sci. Technol., 11, 1826. DOI: 10.1088/0957-0233/11/12/703.10.1088/0957-0233/11/12/703Search in Google Scholar

2. Spencer, L. V. (1955). Theory of electron penetration. Phys. Rev., 98(6), 1597–1615.10.1103/PhysRev.98.1597Search in Google Scholar

3. Kanaya, K., & Okayama, S. (1972). Penetration and energy-loss theory of electrons in solid targets. J. Phys. D-Appl. Phys., 5, 43–58.10.1088/0022-3727/5/1/308Search in Google Scholar

4. Shimizu, R., Kataoka, Y., Ikuta, T., Koshikawat, T., & Hashimoto, H. (1976). A Monte Carlo approach to the direct simulation of electron penetration in solids. J. Phys. D-Appl. Phys., 9, 101–114.10.1088/0022-3727/9/1/017Search in Google Scholar

5. Adesida, I., Shimizu, R., & Everhart, T. E. (1980). A study of electron penetration in solids using a direct Monte Carlo approach. J. Appl. Phys., 51(11), 5962–5969.10.1063/1.327515Search in Google Scholar

6. Dep, P., & Nundy, U. (1988) A study of the penetration of electrons in compounds by Monte Carlo calculations. J. Phys. D-Appl. Phys., 21, 763–767.Search in Google Scholar

7. Shimizu, R., & Ze-Jun, D. (1992). Monte Carlo modeling of electron-solid interactions. Rep. Prog. Phys., 55, 487–531.10.1088/0034-4885/55/4/002Search in Google Scholar

8. Ivin, V. V., Silakov, M. V., Babushkin, G. A., Lu, B., Mangat, P. J., Nordquist, K. J., & Resnick, D. J. (2003). Modeling and simulation issues in Monte Carlo calculation of electron interaction with solid targets. Microelectron. Eng., 69, 594–605.10.1016/S0167-9317(03)00351-4Search in Google Scholar

9. Ding, Z. J., Salma, K., Li, H. M., Zhang, Z. M., Tokesi, K., Varga, D., Toth, J., Goto, K., & Shimizu, R. (2006). Monte Carlo simulation study of electron interaction with solids and surfaces. Surf. Interface Anal., 38, 657–663.10.1002/sia.2166Search in Google Scholar

10. Dapor, M. (1992). Monte Carlo simulation of backscattered electrons and energy from thick targets and surface films. Phys. Rev. B, 46(2), 618–625.10.1103/PhysRevB.46.618Search in Google Scholar

11. Joy, D. C. (1991). An introduction to Monte Carlo simulations. Scanning Microscopy, 5(2), 329–337.Search in Google Scholar

12. Molière, G. (1947). Theory of scattering of fast charged particles. I. Single scattering in a screened Coulomb field. Z. Naturforsch. A, 2, 133–145.Search in Google Scholar

13. Nigam, B. P., Sundaresan, M. K., & Wu, T. Y. (1959). Theory of multiple scattering second Born approximation and corrections to Moliere’s work. Phys. Rev., 115, 491–502.10.1103/PhysRev.115.491Search in Google Scholar

14. Joy, D. C. (1955). Monte Carlo modeling for electron microscopy and microanalysis. New York: Oxford University Press.Search in Google Scholar

15. Kyriakou, I., Emfietzoglou, D., Nojeh, A., & Moscovitch, M. (2013). Monte Carlo study of electron-beam penetration and backscattering in multi-walled carbon nanotube materials: The effect of different scattering models. J. Appl. Phys., 113, 084303-11.10.1063/1.4792231Search in Google Scholar

16. Mayol, R., & Salvat, F. (1997). Total and transport cross sections for elastic scattering of electrons by atoms. Atom. Data Nucl. Data Tables, 65, 55–154.10.1006/adnd.1997.0734Search in Google Scholar

17. Jablonski, A., Salvat, F., & Powell, C. J. (2010). NIST electron elastic-scattering cross-section database – Version 3.2. National Institute of Standards and Technology Standard Reference Data Program. Gaithersburg, MD: National Institute of Standards and Technology.Search in Google Scholar

18. Liljequist, D. (1983). A simple calculation of inelastic mean free path and stopping power for 50 eV-50 keV electrons in solids. J. Phys. D-Appl. Phys., 16, 1567–1582.10.1088/0022-3727/16/8/023Search in Google Scholar

19. Gryzinski, M. (1965). Two-particle collisions. I. General relations for collisions in the laboratory system, two-particle collisions. II. Coulomb collisions in the laboratory system of coordinates, classical theory of atomic collisions. I. Theory of inelastic collisions. Phys. Rev., 138, A305, A322, A336.Search in Google Scholar

20. Ozmutlu, E. N., & Aydin, A. (1994). Monte-Carlo calculations of 50 eV-I MeV positrons in aluminum. Appl. Radiat. Isot., 45, 963–971.10.1016/0969-8043(94)90236-4Search in Google Scholar

21. Aydın, A. (2000). Monte Carlo calculations of positron implantation profiles in silver and gold. Radiat. Phys. Chem., 59, 277–280.10.1016/S0969-806X(00)00294-2Search in Google Scholar

22. Aydın, A. (2005). Monte Carlo calculations of low energy positrons in silicon. Nukleonika, 50(1), 37–42.Search in Google Scholar

23. Aydın, A. (2009). Monte Carlo calculations of electrons in aluminum. Appl. Radiat. Isot., 67, 281–286.10.1016/j.apradiso.2008.04.02218541434Search in Google Scholar

24. Powell, C. J., & Jablonski, A. (2010). NIST electron inelastic mean free path database. Version 1.2. Gaithersburg, MD: National Institute of Standards and Technology. (SRD 71).Search in Google Scholar

25. Penn, D. R. (1987). Electron mean free path calculations using a model dielectric function. Phys. Rev. B, 35, 482–486.10.1103/PhysRevB.35.482Search in Google Scholar

26. Seliger, H. H. (1955). Transmission of positrons and electrons. Phys. Rev., 100(4), 1029–1037.10.1103/PhysRev.100.1029Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo