1. bookVolume 60 (2015): Issue 2 (June 2015)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Enhanced resonant second harmonic generation in plasma based on density transition

Published Online: 22 Jun 2015
Volume & Issue: Volume 60 (2015) - Issue 2 (June 2015)
Page range: 355 - 360
Received: 25 Sep 2014
Accepted: 22 Jan 2015
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

Resonant second harmonic generation of a relativistic self-focusing laser in plasma with density ramp profile has been investigated. A high intense Gaussian laser beam generates resonant second harmonic beam in plasma with density ramp profile. The second harmonic undergoes periodic focusing in the plasma channel created by the fundamental wave. The normalized second harmonic amplitude varies periodically with distance and attains maximum value in the focal region. Enhancement in the second harmonic amplitude on account of relativistic self-focusing of laser based on plasma density transition is seen. Plasma density ramp plays an important role to make self-focusing stronger which leads to enhance the second harmonic generation in plasma.

Keywords

1. Sharma, J. K., & Parashar, J. (2003). Parametric instability of a lower hybrid wave in a dusty plasma. Indian J. Pure Appl. Phys., 41, 290–294.Search in Google Scholar

2. Sharma, J. K., Parashar, J., & Mehta, A. S. (2003). Relativistic stimulated Raman scattering in a plasma channel. Indian J. Pure Appl. Phys., 41, 73–76.Search in Google Scholar

3. Parasher, J., & Pandey, H. D. (1992). Second-harmonic generation of laser radiation in a plasma with a density ripple. IEEE Trans. Plasma Sci., 20, 996–999. DOI: 10.1109/27.199564.10.1109/27.199564Search in Google Scholar

4. Parashar, J., & Sharma, A. K. (1998). Second harmonic generation by an obliquely incident laser on a vacuum plasma interface. Europhys. Lett., 41, 389. DOI: 10.1209/epl/i1998-00162-1.10.1209/epl/i1998-00162-1Search in Google Scholar

5. Pramanik, T. K., & Bhattacharya, D. P. (1990). Harmonic generation in semiconductors in the presence of deep repulsive traps. Solid State Commun., 74, 539–542. DOI: 10.1016/0038-1098(90)90342-9.10.1016/0038-1098(90)90342-9Search in Google Scholar

6. Malka, V., Modena, A., Najmudin, Z., Dangor, A. E., Clayton, C. E., Marsh, K. A., Joshi, C., Danson, C., Neely, D., & Walsh. F. N. (1997). Second harmonic generation and its interaction with relativistic plasma waves driven by forward Raman instability in underdense plasmas. Plasma Phys., 4, 1127–1131. DOI: 10.1063/1.872201.10.1063/1.872201Search in Google Scholar

7. Esarey, E., Ting, A., Sprangle, P., Umstadter, D., & Liu, X. (1993). Nonlinear analysis of relativistic harmonic generation by intense lasers in plasmas. IEEE Trans. Plasma Sci., 21, 95–104. DOI: 10.1109/27.221107.10.1109/27.221107Search in Google Scholar

8. Kant, N., Gupta, D. N., & Suk, H. (2011). Generation of second-harmonic radiations of a self-focusing laser from a plasma with density-transition. Phys. Lett. A, 375, 35. DOI: 10.1016/j.physleta.2011.06.062.10.1016/j.physleta.2011.06.062Search in Google Scholar

9. Tatarakis, M., Watts, I., Beg, F. N., Clark, E. L., Dangor, A. E., Gopal, A., Haines, M. G., Norreys, P. A., Wagner, U., Wei, M. S., Zepf, M., & Krushelnick, K. (2002). Laser technology-measuring huge magnetic fields. Nature, 415, 280–280. DOI: 10.1038/415280a.10.1038/415280a11796997Search in Google Scholar

10. Kant, N., & Sharma, A. K. (2004). Resonant second-harmonic generation of a short pulse laser in a plasma channel. J. Phys. D-Appl. Phys., 37, 2395. DOI: 10.1088/0022-3727/37/17/009.10.1088/0022-3727/37/17/009Search in Google Scholar

11. Petrov, E. Y., & Kudrin, A. V. (2010). Exact axisymmetric solutions of the Maxwell equations in a nonlinear nondispersive medium. Phys. Rev. Lett., 104, 190404-7. DOI: 10.1103/PhysRevLett.104.190404.10.1103/PhysRevLett.104.19040420866950Search in Google Scholar

12. Kant, N., & Sharma, A. K. (2004). Effect of pulse slippage on resonant second harmonic generation of a short pulse laser in a plasma. J. Phys. D-Appl. Phys., 37, 998–1001. DOI: 10.1088/0022-3727/37/7/007.10.1088/0022-3727/37/7/007Search in Google Scholar

13. Osman, F., Castillo, R., & Hora, H. (1999). Relativistic and ponderomotive self-focusing at laser–plasma interaction. J. Plasma Phys., 61, 263–273. DOI: 10.1017/S0022377898007417.10.1017/S0022377898007417Search in Google Scholar

14. Hafizi, B., Ting, A., Sprangle, P., & Hubbard, R. F.. (2000). Relativistic focusing and ponderomotive channeling of intense laser beams. Phys. Rev. E, 62, 4120. DOI: 10.1103/PhysRevE.62.4120.10.1103/PhysRevE.62.412011088939Search in Google Scholar

15. Hora, H., & Ghatak, A. K. (1985). New electrostatic resonance driven by laser radiation at perpendicular incidence in superdense plasmas. Phys. Rev. A, 31, 3473. DOI: 10.1103/PhysRevA.31.3473.10.1103/PhysRevA.31.3473Search in Google Scholar

16. Baton, S. D., Baldies, H. A., Jalinaud, T., & Labaune, C. (1993). Fine-scale spatial and temporal structures of second-harmonic emission from an underdense plasma. Europhys. Lett., 23, 191. DOI: 10.1209/0295-5075/23/3/006.10.1209/0295-5075/23/3/006Search in Google Scholar

17. Schifano, E., Baton, S. D., Biancalana, V., Giulietti, A., Giulietti, D., Labaune, C., & Renard, N. (1994). Second harmonic emission from laser-preformed plasmas as a diagnostic for filamentation in various interaction conditions. Laser Part. Beams, 12, 435. DOI: 10.1017/S0263034600008296.10.1017/S0263034600008296Search in Google Scholar

18. Ganeev, R. A., Chakera, J. A., Raghuramaiah, M., Sharma, A. K., Naik, P. A., & Gupta, P. D. (2001). Experimental study of harmonic generation from solid surfaces irradiated by multipicosecond laser pulses. Phys. Rev. E, 63, 026402. DOI: 10.1103/PhysRevE.63.026402.10.1103/PhysRevE.63.02640211308580Search in Google Scholar

19. Banerjee, S., Valenzuela, A. R., Shah, R. C., Maksimchuk, A., & Umstadter, D. (2002). High harmonic generation in relativistic laser–plasma interaction. Phys. Plasmas, 9, 2393. DOI: 10.1063/1.1470167.10.1063/1.1470167Search in Google Scholar

20. Lin, H., Chen, L., & Kieffer, J. C. (2002). Harmonic generation of ultraintense laser pulses in underdense plasma. Phys. Rev. E, 65, 036414. DOI: 10.1103/PhysRevE.65.036414.10.1103/PhysRevE.65.03641411909269Search in Google Scholar

21. Mori, M., Takahashi, E., & Kondo, K. (2002). Image of second harmonic emission generated from ponderomotively excited plasma density gradient. Phys. Plasmas, 9, 2812. DOI: 10.1063/1.1481506.10.1063/1.1481506Search in Google Scholar

22. Kuo, C. C., Pai, C. H., Lin, M. W., Lee, K. H., Lin, J. Y., Wang, J., & Chen, S. Y. (2007). Enhancement of relativistic harmonic generation by an optically preformed periodic plasma waveguide. Phys. Rev. Lett., 98, 033901. DOI: 10.1103/PhysRevLett.98.033901.10.1103/PhysRevLett.98.03390117358683Search in Google Scholar

23. Kant, N., Sarlach, S., & Singh, H. (2011). Ponderomotive self-focusing of a short laser pulse under a plasma density ramp. Nukleonika, 56(2), 149–153.Search in Google Scholar

24. Gupta, D. N., Hur, M. S., & Suk, H. (2006). Energy exchange during stimulated Raman scattering of a relativistic laser in plasma. J. Appl. Phys., 100, 103101-5. DOI: 10.1063/1.2384808.10.1063/1.2384808Search in Google Scholar

25. Singh, A., & Walia, K. (2011). Self-focusing of Gaussian laser beam through collisionless plasmas and its effect on second harmonic generation. J. Fusion Energy, 30, 555–560. DOI: 10.1007/s10894-011-9426-z.10.1007/s10894-011-9426-zSearch in Google Scholar

26. Kant, N., Wani, M. A., & Kumar, A. (2012). Self-focusing of Hermite-Gaussian laser beams in plasma under plasma density ramp. Opt. Commun., 285, 4483–4487. DOI: 10.1063/1.4870080.10.1063/1.4870080Search in Google Scholar

27. Nanda, V., Kant, N., & Wani, M. A. (2013). Self-focusing of a Hermite-cosh Gaussian laser beam in a magnetoplasma with ramp density profile. Phys. Plasmas, 20, 113109-7. DOI: 10.1063/1.4870080.10.1063/1.4870080Search in Google Scholar

28. Nanda, V., & Kant, N. (2014). Enhanced relativistic self-focusing of Hermite-Cosh-Gaussian (HChG) laser beam in plasma under density transition. Phys. Plasmas, 21, 042101-6. DOI: 10.1063/1.4870080.10.1063/1.4870080Search in Google Scholar

29. Nanda, V., & Kant, N. (2014). Strong self-focusing of a cosh-Gaussian Laser Beam in collisionless magnetoplasma under plasma density ramp. Phys. Plasmas, 21, 072111-8. DOI: 10.1063/1.4889862.10.1063/1.4889862Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo