1. bookVolume 60 (2015): Issue 2 (June 2015)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Open Access

Neutronic analysis for core conversion (HEU–LEU) of the low power research reactor using the MCNP4C code

Published Online: 22 Jun 2015
Volume & Issue: Volume 60 (2015) - Issue 2 (June 2015)
Page range: 367 - 371
Received: 16 Sep 2014
Accepted: 06 Mar 2015
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

Comparative studies for conversion of the fuel from HEU to LEU in the miniature neutron source reactor (MNSR) have been performed using the MCNP4C code. The HEU fuel (UAl4-Al, 90% enriched with Al clad) and LEU (UO2 12.6% enriched with zircaloy-4 alloy clad) cores have been analyzed in this study. The existing HEU core of MNSR was analyzed to validate the neutronic model of reactor, while the LEU core was studied to prove the possibility of fuel conversion of the existing HEU core. The proposed LEU core contained the same number of fuel pins as the HEU core. All other structure materials and dimensions of HEU and LEU cores were the same except the increase in the radius of control rod material from 0.195 to 0.205 cm and keeping the outer diameter of the control rod unchanged in the LEU core. The effective multiplication factor (keff), excess reactivity (ρex), control rod worth (CRW), shutdown margin (SDM), safety reactivity factor (SRF), delayed neutron fraction (βeff) and the neutron fluxes in the irradiation tubes for the existing and the potential LEU fuel were investigated. The results showed that the safety parameters and the neutron fluxes in the irradiation tubes of the LEU fuels were in good agreements with the HEU results. Therefore, the LEU fuel was validated to be a suitable choice for fuel conversion of the MNSR in the future.

Keywords

1. CIAE. (1993). Safety Analysis Report (SAR) for the Syrian Miniature Neutron Source Reactor. China.Search in Google Scholar

2. Khamis, I., & Khattab, K. (1999). Lowering the enrichment of the Syrian Miniature Neutron Source Reactor. Ann. Nucl. Energy, 26, 1031–1036.10.1016/S0306-4549(98)00108-XSearch in Google Scholar

3. Matos, J., & Lell, R. (2005). Feasibility study on potential LEU fuels for a generic MNSR reactor. In International Meeting on Reduced Enrichment for Research and Test Reactors, November 6–10, 2005. Boston, Massachusetts.Search in Google Scholar

4. Briesmeister, F. J. (2000). MCNP4C manual, Monte Carlo N-Particle Transport Code System. (RSICC code package CCC-700/MCNP4C). Oak Ridge National Laboratory, TN, and DOE, USA.Search in Google Scholar

5. Jonah, S. A., Liaw, J. R., & Matos, J. E. (2007). Monte Carlo simulation of core physics parameters of the Nigeria Research Reactor-1 (NIRR-1). Ann. Nucl. Energy, 34, 953–957.10.1016/j.anucene.2007.05.010Search in Google Scholar

6. Khattab, K., & Sulieman, I. (2009). Calculations of the thermal and fast neutron fluxes in the Syrian MNSR irradiation tubes using the MCNP-4C code. Appl. Radiat. Isot., 67, 535–538.10.1016/j.apradiso.2008.11.002Search in Google Scholar

7. Balogun, G. I. (2003). Automating some analysis and design calculations of miniature neutron source reactors at CERT (1). Ann. Nucl. Energy, 30, 81–92.10.1016/S0306-4549(02)00045-2Search in Google Scholar

8. Tayyab, M., Showket, P., & Masood, I. (2008). Neutronic analysis for core conversion (HEU-LEU) of Pakistan research reactor-2 (PARR-2). Ann. Nucl. Energy, 35, 1440–1446.10.1016/j.anucene.2008.01.012Search in Google Scholar

9. Hainoun, A., Hajhassan, H., & Ghazi, N. (2009). Determination of major kinetic parameters of the Syrian MNSR for different fuel loading using Monte Carlo technique. Ann. Nucl. Energy, 36, 1663–1667.10.1016/j.anucene.2009.09.010Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo