1. bookVolume 33 (2015): Issue 4 (December 2015)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Impact of processing parameters on the LTCC channels geometry

Published Online: 06 Jan 2016
Volume & Issue: Volume 33 (2015) - Issue 4 (December 2015)
Page range: 816 - 825
Received: 11 Feb 2015
Accepted: 02 Sep 2015
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

A great advantage of Low Temperature Co-fired Ceramics (LTCC) yields the possibility of channel and air cavity fabrication. Such empty spaces have numerous applications, for example, in microfluidics, microwave techniques and integrated packaging. However, improper geometry of these structures can degrade the performance of the final device. The processing parameters recommended by the LTCC tape supplier are relevant for the production of multilayer circuits but not surface embedded channels and/or cavities. Thus, it is important to examine which factors of the fabrication process are the most significant. In our study, special attention has been paid to the geometric performance of the channel structure resulting from the applied processing parameters. Laser cutting parameters were checked to obtain the structures with great fidelity. The impact of an isostatic lamination on the quality of the final structure was analyzed. The influence of pressure and temperature of the lamination process on the channel geometry and tape shrinkage were examined. The performed experiments showed that some improvements in channel/cavity geometry may be achieved by optimizing the processing procedures. The microscopic observations combined with the Analysis of Variance (ANOVA) showed which combinations of the processing parameters are the best for achieving a channel/cavity structure with the desired geometry.

Keywords

[1] Thelemann T., Thust H., Hintz M., Microelectron. Int., 19 (3) (2002), 19.10.1108/13565360210445005Search in Google Scholar

[2] Jurków D., Golonka L., Int. J. Appl. Ceram. Tec., 10 (2013), 671.10.1111/j.1744-7402.2012.02763.xSearch in Google Scholar

[3] Bittner A., Schmidt U., J. Eur. Ceram. Soc., 29 (1) (2009), 99.Search in Google Scholar

[4] Bartsch H., Albrecht A., Hoffmann M., Müller J., J. Micromech. Microeng., 22 (2012), 015004.10.1088/0960-1317/22/1/015004Search in Google Scholar

[5] Nowak D., M E., Dziedzic A., Kita J., Microelectron. Reliab., 49(6) (2009), 600.10.1016/j.microrel.2009.02.019Search in Google Scholar

[6] Fischer M., Bartsch H., Pawlowski B., Mach M., Gade R., Barth S., Hofmann M., Müller J., Nsti-Nanotech., 3 (2008), 157.Search in Google Scholar

[7] Malecha K., Gancarz I., Golonka L. J., J. Micromech. Microeng., 19 (10) (2009), 105016.10.1088/0960-1317/19/10/105016Search in Google Scholar

[8] Ibanez-Garcia N., Martinez-Cisneros C., Valdes F., Alonso J., Trac-Trend. Anal. Chem., 27 (1) (2008), 24.10.1016/j.trac.2007.11.002Search in Google Scholar

[9] Vasudev A., Kaushik A., Jones K., Bhansali S., Microfluid. Nanofluic., 14 (3 – 4) (2013), 683.10.1007/s10404-012-1087-3Search in Google Scholar

[10] Bembnowicz P., Małodobra M., Kubicki W., Szczepańska P., Górecka-Drzazga A., Dziuban J., Jonkisz A., Karpiewska A., Dobosz T., Golonka L., Sensor. Actuat. B-Chem., 150 (2010), 715.10.1016/j.snb.2010.08.015Search in Google Scholar

[11] Smetana W., Balluch B., Stangl G., Gaubitzer E., Edetsberger M., Köhler G., Microelectron. Eng., 84 (2007), 1240.10.1016/j.mee.2007.01.155Search in Google Scholar

[12] Malecha K., Remiszewska E., Pijanowska D., Sensor. Actuat. B-Chem., 190 (2014), 873.10.1016/j.snb.2013.09.082Search in Google Scholar

[13] Ceramtec Ceramtape Datasheet, accessed 15.07.2014.Search in Google Scholar

[14] Kita J., Dziedzic A., Golonka L.J., Zawada T., Microelectron. Int., 19 (3) (2002), 14.10.1108/13565360210444998Search in Google Scholar

[15] Jurków D., Malecha K., Stiernstedt J., Golonka L., J. Eur. Ceram. Soc., 31 (2011), 1589.10.1016/j.jeurceramsoc.2011.02.034Search in Google Scholar

[16] Jiang B., Haber J., Renken A., Muralt P., Kiwi-Minsker L., Maeder T., Lab Chip, 15 (2015), 563.10.1039/C4LC01105HSearch in Google Scholar

[17] Nowak K. M., Baker H. J., Hall D. R., Appl. Phys. A, 103 (4) (2011), 1033.10.1007/s00339-010-6028-ySearch in Google Scholar

[18] Yung W.K.C., Zhu J., Microelectron. Int., 24 (3) (2007), 27.10.1108/13565360710779163Search in Google Scholar

[19] Smetana W., Balluch B., Stangl G., Lüftl S., Seidler S., Microelectron. Reliab., 49 (6) (2009), 592.10.1016/j.microrel.2009.02.023Search in Google Scholar

[20] Franz M., Atassi I., Maric A., Balluch B., Weilguni M., Smetana W., Kluge C.P., Radosavljevic G., 35th Isse, Bad Aussee, Austria, May 9 – 13, 2012.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo