1. bookVolume 33 (2015): Issue 4 (December 2015)
Journal Details
First Published
16 Apr 2011
Publication timeframe
4 times per year
access type Open Access

Investigation of sol-gel processed CuO/SiO2 nanocomposite as a potential photoanode material

Published Online: 06 Jan 2016
Volume & Issue: Volume 33 (2015) - Issue 4 (December 2015)
Page range: 826 - 834
Received: 17 Feb 2015
Accepted: 20 Aug 2015
Journal Details
First Published
16 Apr 2011
Publication timeframe
4 times per year

Synthesis and characterization of a highly efficient photoconductive nanocomposite comprising of two common metal oxides: copper oxide (CuO) and silicon dioxide (SiO2) are being reported in this paper. The CuO/SiO2 nanocomposite has been synthesized using a cost-effective and facile sol gel route. The structural, chemical and optical properties of the prepared samples have been studied using various characterization techniques. The UV-Vis analysis revealed better absorption in the case of the nanocomposite as compared to its parent materials. X-ray diffraction (XRD) analysis has been employed to determine the structural formation of the nanocomposite and the crystallite size with the use of Scherrer’s formula. The photo conductivity study of the sample showed enhanced photocurrent in the case of nanocomposite as compared to its single components, thus, presenting it as a potential candidate for solar cell applications, especially as photoanode material in the dye-sensitized solar cells (DSSC).


[1] Ajayan P.M., Schadler L.S., Braun P.V., Nanocomposites Science and Technology, Wiley & Sons, New York, 2003.10.1002/3527602127Search in Google Scholar

[2] Kim H., Achermann M., Balet L.P., Hollingsworth J.A., Klimov V.I., J. Am. Chem. Soc., 127 (2005), 544.10.1021/ja047107xSearch in Google Scholar

[3] Hines M.A., Guyot Sionnest P., J. Phys. Chem., 100 (1996), 468.10.1021/jp9530562Search in Google Scholar

[4] Tohidi, Hossein, Grigoryan, Garnik, Sarkeziyan, Iran. J. Chem. Chem. Eng., 29 (2010), 27.Search in Google Scholar

[5] Huang X., Fu Z., Yang X., Sun Z., Zhong M., Yi Y., Tang Y., Wang C., J. Porous Mat., 21 (2014), 9.10.1007/s10934-013-9740-0Search in Google Scholar

[6] Ali A., Jo J., Yang Y. J., Choi K. H., Appl. Phys. A-Mater., 114 (2014), 323.10.1007/s00339-013-8136-ySearch in Google Scholar

[7] Naazeeruddin M.K., Kay A., Gratzel M., J. Am. Chem. Soc., 155 (1993), 6832.Search in Google Scholar

[8] Vayssieres L., Appl. Phys. A-Mater., 89 (2007), 1.10.1007/s00339-007-4039-0Search in Google Scholar

[9] Cao J., Wang Y., Shi J., Sun G., Zhang Z., J. Porous Mat., 18 (2011), 667.10.1007/s10934-010-9424-ySearch in Google Scholar

[10] Naddaf M., Mrad O., Al-Zier A., Appl. Phys. A-Mater., 115 (2014), 1345.10.1007/s00339-013-8008-5Search in Google Scholar

[11] Livage J., Hemry M., Sanchez C., Prog. Solid State Ch., 18 (1988), 259.10.1016/0079-6786(88)90005-2Search in Google Scholar

[12] Zhu Y. F., Zhang L., Gao C, Cao L. L., J. Mater. Sci., 35 (2000), 4049.10.1023/A:1004882120249Search in Google Scholar

[13] Aguado J., van Rafael G., Maria-Jose L-M., Javier M., Appl. Catal. A-Gen., 312 (2006), 202.Search in Google Scholar

[14] Chatterjee S.K., X-ray Diffraction: Its Theory and Application, PHI, India, 2010.Search in Google Scholar

[15] Hall B.D., Zanchet D., Ugarte D., J. Appl. Crystallogr., 33 (2000), 1335.10.1107/S0021889800010888Search in Google Scholar

[16] Monshi A., Foroughi R.M., World J. Nano Sci. Eng., 2 (2012), 154.10.4236/wjnse.2012.23020Search in Google Scholar

[17] Geng Z.R., Li Y., Yan R. J., Wang C.B., Ling X.M., Adv. Mater. Res., 834 – 836 (2013), 50.10.4028/www.scientific.net/AMR.834-836.50Search in Google Scholar

[18] John Coates, Interpretation of Infrared Spectra, A Practical Approach, in: Meyers R.A. (Ed.), Encyclopedia of Analytical Chemistry, John Wiley & Sons Ltd., Chichester, 2000, p. 10815.Search in Google Scholar

[19] Owen T., Fundamentals of UV visible spectroscopy, Agilent Technology, Germany, 2000.Search in Google Scholar

[20] Ponniah D., Xavier F., Phys. Biol., 20 (2007), 392.10.1016/j.physb.2006.10.029Search in Google Scholar

[21] Ethiraj A. S., Kang D. J., Nanoscale Res. Lett., 7 (2012), 70.10.1186/1556-276X-7-70328349622221503Search in Google Scholar

[22] Behera M., Giri G., Mater. Sci.-Poland, 32 (2014), 702.10.2478/s13536-014-0255-4Search in Google Scholar

[23] Sahay R., Kumar P.S., Aravindhan V., Ling W.C., J. Phys. Chem. C, 116 (2012), 18087.10.1021/jp3053949Search in Google Scholar

[24] Yeh C.L., Yeh S.H., Ma H.K., Powder Technol., 145 (2004), 1.10.1016/j.powtec.2004.04.042Search in Google Scholar

[25] Senkevich J. J., Desu S. B., Appl. Phys. A-Mater., 70 (2000), 541.10.1007/s003390051076Search in Google Scholar

[26] Castro A.L., Nunes M.R., Solid State Sci., 10 (2008), 602.10.1016/j.solidstatesciences.2007.10.012Search in Google Scholar

[27] Li J., Vizkelethy G., Revesz P., Mayer J.W., Tu K.N., J. Appl. Phys., 69 (1991), 1020.10.1063/1.347417Search in Google Scholar

[28] Kumar A.D., Xavier F.P., Shyla M.J., Appl. Nanosci., 2 (2012), 429.10.1007/s13204-012-0060-5Search in Google Scholar

[29] Dhanasekaran V., Soundaram N., Chandramohan R., New J. Chem., 38 (2014), 2327.10.1039/c4nj00084fSearch in Google Scholar

[30] Ahmed N.M., Selim M.M., Anti-Corros. Method. M., 57 (2010), 133.10.1108/00035591011040092Search in Google Scholar

[31] Yu H., Lui R., Wang X., Wang P., Yu J., Appl. Catal. B-Environ., 111 (2012), 326.10.1016/j.apcatb.2011.10.015Search in Google Scholar

[32] Zhang S., Zhang C., Man Y., Zhu Y., J. Solid State Chem., 179 (2006), 62.10.1016/j.jssc.2005.09.041Search in Google Scholar

[33] Wang X., Li S., Yu H., Yu J., J. Mol. Catal. A-Chem., 334 (2011), 52.10.1016/j.molcata.2010.10.022Search in Google Scholar

[34] Stengl V., Bakardjieva S., Grygar T. M., Bludska J., Kormunda M., Chem. Cent. J., 7 (2013), 41.10.1186/1752-153X-7-41359864723445868Search in Google Scholar

[35] Thekkae Padil V.V., Černík M., Int. J. Nanomed., 8 (2013), 889.Search in Google Scholar

[36] Rahman A., Ismail A., Jumbianti D., Magdalena S., Indian J. Chem. B, 9 (2009), 355.10.22146/ijc.21498Search in Google Scholar

[37] Azam A., Ahmed A.S., Oves M., Khan M.S., Habib S.S., Memic A., Int. J. Nanomed., 7 (2012), 6003.10.2147/IJN.S35347351900523233805Search in Google Scholar

[38] Cruza da R.S., Silvaa de J.M., Arnolda U., Sercheli Schuchardt M.S., J. Braz. Chem. Soc., 13 (2002), 170.10.1590/S0103-50532002000200007Search in Google Scholar

[39] Neumann R., Levin-Elad M., J. Catal., 166 (1997), 206.10.1007/978-3-322-95608-8_7Search in Google Scholar

[40] Miller J.B., Rankin S.E., Ko E.I., J. Catal., 148 (1994), 673.10.1006/jcat.1994.1254Search in Google Scholar

[41] Moretti G., Dossi C., Fusi A., Recchia S., Psaro R., Appl. Catal. B-Environ., 1 (1999), 67.10.1016/S0926-3373(98)00096-4Search in Google Scholar

[42] Martinez J.R., Ruiz F., Vorobiev Y.V., Gonzalez J., J. Chem. Phys., 109 (1998), 7511.10.1063/1.477374Search in Google Scholar

[43] Wang Z., Lui Q., Yu J., Wu T., Wang G., Appl. Catal. A-Gen., 239 (2003), 87.10.1016/S0926-860X(02)00421-0Search in Google Scholar

[44] Jimenez J.A., Appl. Phys. A-Mater., 114 (2014), 1369.10.1007/s00339-013-7992-9Search in Google Scholar

[45] Dhar S., Chakrabarti S., Semicond. Sci. Tech., 11 (1996), 1231.10.1088/0268-1242/11/8/020Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo