1. bookVolume 33 (2015): Issue 2 (June 2015)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

First-principle investigations of structural and electronic properties of TMAl (TM = Fe, Co, and Ni) transition metal aluminides

Published Online: 11 Jul 2015
Volume & Issue: Volume 33 (2015) - Issue 2 (June 2015)
Page range: 251 - 258
Received: 12 May 2014
Accepted: 21 Dec 2014
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

In the present work, we have investigated the structural and electronic properties of TMAl (TM = Fe, Co, and Ni) transition metal aluminides in the B2 structure, using first-principle calculations of the density functional theory (DFT) based on the linearized augmented plane wave method (FP-LAPW) as implemented in the WIEN2k code, in which the energy of exchange and correlation are treated by the generalized gradient approximation (GGA), proposed in 1996 by Perdew, Burke and Ernzerhof (PBE). The ground state properties have been calculated and compared with other calculations, and the electronic structures of all FeAl, CoAl, and NiAl compounds exhibited a metallic behavior. It was depicted that the density of states is characterized by the large hybridization between the s-p (Al) and 3d (Fe, Co, and Ni) states, which creates the pseudogap in the region of anti-bonding states. Moreover, the band structures of FeAl, CoAl, and NiAl are similar to each other and the difference between them is in the energy level of each band relative to the Fermi level.

Keywords

[1] YANG S.H., MEHL M.J., PAPACONSTANTOPOULOS D.A., SCOTT M.B., J. Phys.-Condens. Mat., 14 (2002), 1895.10.1088/0953-8984/14/8/317Search in Google Scholar

[2] STOLOFF N.S., LIU C.T., DEEVI S.C., Intermetallics, 8 (2000), 1313.10.1016/S0966-9795(00)00077-7Search in Google Scholar

[3] NANDI P., CHATTOPADHYAY P.P., PABI S.K., MANNA I., Mater. Phys. Mech., 4 (2001), 116.Search in Google Scholar

[4] YEH C.L., HWANG P.W., CHEN W.K., LI J.Y., Intermetallics, 39 (2013), 20.10.1016/j.intermet.2013.03.021Search in Google Scholar

[5] CINCA N., GUILEMANY J.M., Intermetallics, 24 (2012), 60.10.1016/j.intermet.2012.01.020Search in Google Scholar

[6] RHEE J.Y., J. Korean Phys. Soc., 43 (2003), 1091.10.3938/jkps.43.792Search in Google Scholar

[7] ANTONOV V.N., KRASOVSKA O.V., KRASOVSKII E.E., KUDRYAVTSEV Y.V., NEMOSHKALENKO V.V., YAVORSKY B.Y., LEE Y.P., KIM K.W., J. Phys.- Condens. Mat., 9 (1997), 11227.10.1088/0953-8984/9/50/023Search in Google Scholar

[8] YAMAGUCHI M., INUI H., ITO K., Acta Mater., 48 (2000), 307.10.1016/S1359-6454(99)00301-8Search in Google Scholar

[9] SCHEPPE F., SAHM P.R., HERMANN W., PAUL U., PREUHS J., Mat. Sci. Eng. A-Struct., 329 - 331 (2002), 596.10.1016/S0921-5093(01)01587-8Search in Google Scholar

[10] XU G.H., LU Z., ZHANG K.F., Intermetallics, 31 (2012), 99.10.1016/j.intermet.2012.06.007Search in Google Scholar

[11] STEIN F., HE C., DUPIN N., Intermetallics, 39 (2013), 58.10.1016/j.intermet.2013.03.011Search in Google Scholar

[12] EIBLERT R., NECKEL A., J. Phys. F-Met. Phys., 10 (1980), 2179.10.1088/0305-4608/10/10/015Search in Google Scholar

[13] PECHTER K., RASTL P., NECKEL A., EIBLER R., SCHWARZ K., Monatsh. Chem., 112 (1981), 317.10.1007/BF00900763Search in Google Scholar

[14] MIN B.I., OGUCHI T., JENSEN H.J.F., FREEMAN A.J., J. Magn. Magn. Mater., 54 - 57 (1986), 1091.10.1016/0304-8853(86)90396-3Search in Google Scholar

[15] MEHL M.J., SINGH D.J., PAPACONSTANTOPOULOS D.A., Mat. Sci. Eng. A-Struct., 170 (1993), 49.10.1016/0921-5093(93)90368-OSearch in Google Scholar

[16] SCHULTZ P.A., DAVENPORT J.W., J. Alloy. Comp., 197 (1993), 229.10.1016/0925-8388(93)90045-OSearch in Google Scholar

[17] COHEN R.E., MEHL M.J., PAPACONSTANTOPOULOS D.A., Phys. Rev. B, 50 (1994), 14694.10.1103/PhysRevB.50.14694Search in Google Scholar

[18] MEHL M.J., KLEIN B.M., PAPACONSTANTOPOULOS D.A., Intermetallic compounds, principles and practice, in: WESTBROOK J.H., FLEISHER R.L., (Eds.), Principles, Wiley, London, (1995) pp. 195 - 210.Search in Google Scholar

[19] SUNDARARAJAN V., SAHU B.R., KANHERE D.G., PANAT P.V., DAS G.P., J. Phys.-Condens. Mat., 7 (1995), 6019.10.1088/0953-8984/7/30/007Search in Google Scholar

[20] NGUYEN-MANH D., PETTIFOR D.G., Intermetallics, 7 (1999), 1095.10.1016/S0966-9795(99)00040-0Search in Google Scholar

[21] BOTTON G.A., HUMPHREYS C.J., Intermetallics, 7 (1999), 829.10.1016/S0966-9795(98)00133-2Search in Google Scholar

[22] RHEE J.Y., KUDRYAVTSEV Y.V., KIM K.W., LEE Y.P., J. Appl. Phys., 87 (2000), 5887.10.1063/1.372556Search in Google Scholar

[23] BÖRNSEN N., BESTER G., MEYER B., F¨AHNLE M., J Alloy. Comp., 308 (2000), 1.10.1016/S0925-8388(00)00984-1Search in Google Scholar

[24] KIRCHHOFF F., MEHL M.J., PAPANICOLAOU N.I., PAPACONSTANTOPOULOS D.A., KHAN F.S., Phys. Rev. B, 63 (2001), 195101.10.1103/PhysRevB.63.195101Search in Google Scholar

[25] RHEE J.Y., Curr. Appl. Phys., 6 (2006), 852.10.1016/j.cap.2005.02.001Search in Google Scholar

[26] PADUANI C., Solid State Commun., 150 (2010), 189.10.1016/j.ssc.2009.10.031Search in Google Scholar

[27] HOHENBERG P., KOHN W., Phys. Rev. B, 136 (1964), 864.10.1103/PhysRev.136.B864Search in Google Scholar

[28] KOHN W., SHAM L.J., Phys. Rev. A, 140 (1965), 1133.10.1103/PhysRev.140.A1133Search in Google Scholar

[29] BLAHA P., SCHWARZ K., MADSEN G.K.H., KVASNICKA D., LUITZ J., Computer code WIEN2K, Vienna University of Technology, 2002, improved and updated Unix version of the original BLAHA P., SCHWARZ K., SORANTIN P., RICKEY S.B., Comput. Phys. Commun., 59 (1990), 399.10.1016/0010-4655(90)90187-6Search in Google Scholar

[30] PERDEW J.P., BURKE K., ERNZERHOF M., Phys. Rev. Lett., 77 (1996), 3865.10.1103/PhysRevLett.77.386510062328Search in Google Scholar

[31] MONKHORST H.J., PACK J.D., Phys. Rev. B, 13 (1976), 5188.10.1103/PhysRevB.13.5188Search in Google Scholar

[32] PACK J.D., MONKHORST H.J., Phys. Rev. B, 16 (1977), 1748.10.1103/PhysRevB.16.1748Search in Google Scholar

[33] MURANGHAN F.D., P. Natl. Acad. Sci. USA, 30 (1944), 244.10.1073/pnas.30.9.244Search in Google Scholar

[34] TRAN F., LASKOWSKI R., BLAHA P., SCHWARZ K., Phys. Rev. B, 75 (2007), 115131.10.1103/PhysRevB.75.115131Search in Google Scholar

[35] SHAOJUN L., SUQING D., BENKUN M., Phys. Rev. B, 58 (1998), 9705.10.1103/PhysRevB.58.9705Search in Google Scholar

[36] ÖǦ ¨U T S., RABE K.M., Phys. Rev. B, 50 (1994), 2075.10.1103/PhysRevB.50.2075Search in Google Scholar

[37] KORZHAVYI P.A., RUBAN A.V., LOZOVOI A.Y., VEKILOV Y.K., ABRIKOSOV I.A., JOHANSSON B., Phys. Rev. B, 61 (2000), 6003.10.1103/PhysRevB.61.6003Search in Google Scholar

[38] NGUYEN-MANH D., MAYOU D., PASTUREL A., CYROT-LACKMANN F., J. Phys. F-Met. Phys., 15 (1985) 1911.10.1088/0305-4608/15/9/010Search in Google Scholar

[39] FU H., LI X.F., LIU W.F., MA Y., GAO T., HONG X., Intermetallics, 19 (2011), 1959.10.1016/j.intermet.2011.05.019Search in Google Scholar

[40] MEDVEDEVA N.I., GORNOSTYREV Y.N., NOVIKOV D.L., MRYASOV O.N., FREEMAN A.J., Acta Mater., 46 (1998), 3433.10.1016/S1359-6454(98)00042-1Search in Google Scholar

[41] ANDERSON I.M., Acta Mater., 45 (1997), 3897.10.1016/S1359-6454(97)00042-6Search in Google Scholar

[42] TERADA Y., OHKUBO K., NAKAGAWA K., MOHRI T., SUZUKI T., Intermetallics, 3 (1995), 347. 10.1016/0966-9795(95)94253-BSearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo