1. bookVolume 33 (2015): Issue 2 (June 2015)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Frequency and temperature dependent transport properties of NiCuZn ceramic oxide

Published Online: 11 Jul 2015
Volume & Issue: Volume 33 (2015) - Issue 2 (June 2015)
Page range: 259 - 267
Received: 19 Jun 2014
Accepted: 12 Jan 2015
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

A polycrystalline sample of ceramic oxide Ni0.27Cu0.10Zn0.63Fe2O4 was prepared by the solid state reaction method. The sintered sample was well polished to remove any oxide layer formed during sintering and the two surfaces of the pellet were coated with a silver paste as a contact material. Among dielectric properties, complex dielectric constant (ε* = εʹ - jεʺ), loss tangent (tanδ) and ac conductivity (σac) in the frequency range of 20 Hz to 2 MHz were analyzed in the temperature range of 303 to 498 K using a Wayne Kerr impedance analyzer (model No. 6500B). The experimental results indicate that ε, εʺ, tanδ and σac decrease with an increase in frequency and increase with increasing temperature. The transition temperature, as obtained from dispersion curve of εʹ, shifts towards higher temperature with an increase in frequency. The variation of dielectric properties with frequency and temperature shows the dispersion behavior which is explained in the light of Maxwell-Wagner type of interfacial polarization in accordance with the Koop’s phenomenological theory. The frequency dependent conductivity results satisfy the Jonscher’s power law, σT(ω) = σ(o)+Aωn, and the results show the occurrence of two types of conduction process at elevated temperature: (i) low frequency conductivity, due to long-range ordering (frequency independent, region I), (ii) mid frequency conductivity at the grain boundaries (region II, dispersion) and (iii) high frequency conductivity at the grain interior due to the short-range hopping mechanism (frequency independent plateau, region III).

Keywords

[1] KÖSEOĞLU Y., KAVAS H., J. Nanosci. Nanotechnol., 8 (2008), 584.10.1166/jnn.2008.B012Search in Google Scholar

[2] LIPARE A.Y., VASAMBEKAR P.N., VAINGANKAR A.S., J. Magn. Magn. Mater., 279 (2004), 160.10.1016/j.jmmm.2003.12.1396Search in Google Scholar

[3] ZI Z., SUN Y., ZHU X., YANG Z., DAI J., SONG W., J. Magn. Magn. Mater., 321 (2009), 1251.10.1016/j.jmmm.2008.11.004Search in Google Scholar

[4] PENG J., HOJAMBERDIEV M., XU Y., CAO B., WANG J., WU H., J. Magn. Magn. Mater., 323 (2011) 133.10.1016/j.jmmm.2010.08.048Search in Google Scholar

[5] VADIVEL M., RAMESH BABU R., SETHURAMAN K., RAMAMURTHI K., ARIVANANDHAN M., J. Magn. Magn. Mater., 362 (2014), 122.10.1016/j.jmmm.2014.03.016Search in Google Scholar

[6] VERWEY E.J., HAAIJAM P.W., ROMEYN F.C., VAN OOSTERHOUT G.W., Philips Res. Rep., 5 (1950), 173.Search in Google Scholar

[7] BATOO K.M., KUMAR S., PRAKASH R., ALIMUDDIN, SONG I., CHUNG H., JEONG H., LEE C.G., J. Cent. South Univ., 17 (2010), 1129.10.1007/s11771-010-0607-0Search in Google Scholar

[8] KUMAR S., FAREA A.M.M., BATOO K.M., LEE C.G., KOO B.H., YOUSEF A., ALIMUDDIN, Physica B, 403 (2008), 3604.Search in Google Scholar

[9] BATOO K.M., KUMAR S., LEE C.G., ALIMUDDIN, J. Alloy. Compd., 480 (2009), 596.10.1016/j.jallcom.2009.01.137Search in Google Scholar

[10] YAMAMOTO Y., MAKINO, J. Magn. Magn. Mater., 133 (1994), 500.10.1016/0304-8853(94)90607-6Search in Google Scholar

[11] FAREA A.M.M., KUMAR S., BATOO K.M., LEE C.G., KOO B.H., YOUSEF A., J. Alloy. Compd., 469 (2009), 451.10.1016/j.jallcom.2008.01.139Search in Google Scholar

[12] BAMMANNAVAR B.K., NAIK L.R., CHOUGULE B.K., J. Appl. Phys., 104 (2008), 064123.10.1063/1.2986470Search in Google Scholar

[13] KUMAR S., ALIMUDDIN, KUMAR R., DOGRA A., REDDY V.R., BANERJEE A., J. Appl. Phys., 99 (2006), 08M910.10.1063/1.2172220Search in Google Scholar

[14] PATIL R.S., KAKATKAR S.V., PATIL S.A., MASKAR P.K., SAWANT S.R., Phys. Status Solidi A, 126 (1991), K185.10.1002/pssa.2211260247Search in Google Scholar

[15] IWAUCHI K., Jpn. J. Appl. Phys., 10 (1971), 1520.10.1143/JJAP.10.1520Search in Google Scholar

[16] VERWEY E.J.W., HAAYMAN W., Physica, 8 (1941), 979.10.1016/S0031-8914(41)80005-6Search in Google Scholar

[17] COLE K.S., COLE R.H., J. Chem. Phys., 9 (1941), 341.10.1063/1.1750906Search in Google Scholar

[18] ANDERSON J.C., Dielectrics, Spottiswoode, Ballantyne & Co Ltd., London and Colchester, 1964.Search in Google Scholar

[19] SMITH J., WIJN H.P.J., Ferrites, Philips Technical Library, Eindhoven, The Netherlands, 1965.Search in Google Scholar

[20] MAXWELL J., A Treatise on Electricity and Magnetism, Clarendon Press, Oxford, London, 1982.Search in Google Scholar

[21] WANGNER K., Ann. Phys.-Berlin, 40 (1913), 817.10.1002/andp.19133450502Search in Google Scholar

[22] KOOPS C.G., Phys. Rev., 83 (1951), 121.10.1103/PhysRev.83.121Search in Google Scholar

[23] KUMAR B., SRIVASTAVA G., J. Appl. Phys., 75 (1994), 6115.10.1063/1.355478Search in Google Scholar

[24] POPANDIAN N., BALAYA P., NARAYANASAMY A., J. Phys.-Condens. Mat., 14 (2002), 3221.10.1088/0953-8984/14/12/311Search in Google Scholar

[25] ANG C., YU Z., CROSS L.E., Phys. Rev. B, 62 (2000), 228.10.1103/PhysRevB.62.228Search in Google Scholar

[26] AHMED M.A., ATEIA E., SALEM F.M., Physica B, 381 (2006), 144.10.1016/j.physb.2005.12.265Search in Google Scholar

[27] VERMA A., KHAKUR O.P., PRAKASH C., GOEL T.C., MENDIRATTA R.G., Mater. Sci. Eng. B-Adv., 116 (2005), 1.10.1016/j.mseb.2004.08.011Search in Google Scholar

[28] EL HITI M.A., J. Magn. Magn. Mater., 192 (1999), 305.10.1016/S0304-8853(98)00356-4Search in Google Scholar

[29] DEVAN R.S., KOLEKAR Y.D., CHOUGULE B.K., J. Phys.-Condens. Mat., 18 (2006), 9809.10.1088/0953-8984/18/43/004Search in Google Scholar

[30] KAMBA S., BOVTUN V., PETZELT J., RYCHETSKY I., MIZARAS R., BRILINGAS A., BANYS J., GRIGAS J., KOSEC M., J. Phys.-Condens. Mat., 12 (2000), 497.10.1088/0953-8984/12/4/309Search in Google Scholar

[31] DAS B.P., MAHAPATRA P.K., CHOUDHARY R.N.P., J. Mater. Sci.-Mater. El., 15 (2004), 107.Search in Google Scholar

[32] KANAGATHARA N., ANBALAGAN G., RENGANATHAN N.G., Int. J. Sci. Tech., 1 (2011), 33.Search in Google Scholar

[33] JONSCHER A.K., Nature, 264 (1977), 673.10.1038/267673a0Search in Google Scholar

[34] MOTT N.F., DAVIS E.A., Electronic Processes in Noncrystalline Materials, Clarendon Press, Oxford, 1979.Search in Google Scholar

[35] GOODENOUGH J.B., Mater. Res. Bull., 8 (1973), 423.10.1016/0025-5408(73)90046-9Search in Google Scholar

[36] PRADHAN D.K., MISRA P., PULI V.S., SAHOO S., PRADHAN D.K., KATIYAR R.S., J. Appl. Phys., 115 (2014), 243904. 10.1063/1.4875661Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo